满分5 > 高中数学试题 >

已知函数,其中a>0. (1)若f(x)在x=1处取得极值,求a的值; (2)求...

已知函数manfen5.com 满分网,其中a>0.
(1)若f(x)在x=1处取得极值,求a的值;
(2)求f(x)的单调区间;
(3)若f(x)的最小值为1,求a的取值范围.
(1)对函数求导,令f′(1)=0,即可解出a值. (2)f′(x)>0,对a的取值范围进行讨论,分类解出单调区间.a≥2时,在区间(0,+∞)上是增函数, (3)由(2)的结论根据单调性确定出最小值,当a≥2时,由(II)知,f(x)的最小值为f(0)=1,恒成立;当0<a<2时,判断知最小值小于1,此时a无解.当0<a<2时,(x)的单调减区间为,单调增区间为 【解析】 (1), ∵f′(x)在x=1处取得极值,f′(1)=0   即 a+a-2=0,解得  a=1 (2), ∵x≥0,a>0, ∴ax+1>0 ①当a≥2时,在区间(0,+∞)上f′(x)>0. ∴f(x)的单调增区间为(0,+∞) ②当0<a<2时,由f′(x)>0解得 由 ∴f(x)的单调减区间为,单调增区间为 (3)当a≥2时,由(II)知,f(x)的最小值为f(0)=1 当0<a<2时,由(II)②知,处取得最小值, 综上可知,若f(x)的最小值为1,则a的取值范围是[2,+∞)
复制答案
考点分析:
相关试题推荐
射击运动员在双项飞碟比赛中,每轮比赛连续发射两枪,击中两个飞靶得2分,击中一个飞靶得1分,不击中飞靶得0分,某射击运动员在每轮比赛连续发射两枪时,第一枪命中率为manfen5.com 满分网,第二枪命中率为manfen5.com 满分网,该运动员如进行2轮比赛.
(Ⅰ)求该运动员得4分的概率为多少?
(Ⅱ)若该运动员所得分数为,求的分布列及数学期望.
查看答案
如,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BCmanfen5.com 满分网,BEmanfen5.com 满分网
(Ⅰ)证明:C,D,F,E四点共面;
(Ⅱ)设AB=BC=BE,求二面角A-ED-B的大小.

manfen5.com 满分网 查看答案
已知:函数manfen5.com 满分网(a、b、c是常数)是奇函数,且满足manfen5.com 满分网
(Ⅰ)求a、b、c的值;
(Ⅱ)试判断函数f(x)在区间manfen5.com 满分网上的单调性并证明.
查看答案
已知数列{an}中,a1=1,当n≥2时,其前n项和sn满足manfen5.com 满分网
(1)证明:数列manfen5.com 满分网为等差数列,并求sn表达式;
(2)设manfen5.com 满分网,求{bn}的前n项和Tn
查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的单调增区间;
(2)已知f(α)=3,且α∈(0,π),求α的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.