满分5 > 高中数学试题 >

已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1...

已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m,n的值;如果不存在,说明理由.
(1)由方程ax2+bx-2x=0有等根,则△=0,得b,又由f(x-1)=f(3-x)知此函数图象的对称轴方程为x=-=1,得a,从而求得f(x). (2)由f(x)=-(x-1)2+1≤1,知4n≤1,即n≤.由对称轴为x=1,知当n≤时,f(x)在[m,n]上为增函数.所以有,最后看是否满足m<n≤即可. 【解析】 (1)∵方程ax2+bx-2x=0有等根,∴△=(b-2)2=0,得b=2. 由f(x-1)=f(3-x)知此函数图象的对称轴方程为x=-=1,得a=-1,故f(x)=-x2+2x. (2)∵f(x)=-(x-1)2+1≤1,∴4n≤1,即n≤. 而抛物线y=-x2+2x的对称轴为x=1,∴当n≤时,f(x)在[m,n]上为增函数. 若满足题设条件的m,n存在,则 即⇒又m<n≤. ∴m=-2,n=0,这时,定义域为[-2,0],值域为[-8,0]. 由以上知满足条件的m,n存在,m=-2,n=0.
复制答案
考点分析:
相关试题推荐
已知数列{an}是首项为manfen5.com 满分网,公比manfen5.com 满分网的等比数列,设manfen5.com 满分网,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若manfen5.com 满分网对一切正整数n恒成立,求实数m的取值范围.
查看答案
已知a>0且a≠1,设p:函数y=ax在R上单调递增,q:设函数y=manfen5.com 满分网,函数y≥1恒成立,若p∧q为假,p∨q为真,求实数a的取值范围.
查看答案
记函数f(x)=lg(x2-x-2)的定义域为集合A,函数manfen5.com 满分网的定义域为集合B.
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},C⊆A,求实数p的取值范围.
查看答案
已知f(x)是定义在[-1,1]上的偶函数,且在(0,1]上单调递增,则不等式f(1-x)<f(x2-1)的解集是    查看答案
已知数列{an}中,a1=2,a2=1,manfen5.com 满分网(n≥2,n∈N),其通项公式an=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.