满分5 > 高中数学试题 >

已知函数f(x)=ax3+bx2-3x在x=±1处取得极值. (Ⅰ)讨论f(1)...

已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(Ⅰ)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;
(Ⅱ)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.
(Ⅰ)求出f'(x),因为函数在x=±1处取得极值,即得到f'(1)=f'(-1)=0,代入求出a与b得到函数解析式,然后讨论利用x的取值范围讨论函数的增减性,得到f(1)和f(-1)分别是函数f(x)的极小值和极大值; (Ⅱ)先判断点A(0,16)不在曲线上,设切点为M(x,y),分别代入导函数和函数中写出切线方程,因为A点在切线上,把A坐标代入求出切点坐标即可求出切线方程. (Ⅰ)【解析】 f'(x)=3ax2+2bx-3,依 题意,f'(1)=f'(-1)=0, 即 解得a=1,b=0. ∴f(x)=x3-3x,f'(x)=3x2-3=3(x+1)(x-1). 令f'(x)=0,得x=-1,x=1. 若x∈(-∞,-1)∪(1,+∞), 则f'(x)>0, 故f(x)在(-∞,-1)上是增函数,f(x)在(1,+∞)上是增函数. 若x∈(-1,1), 则f'(x)<0,故f(x)在(-1,1)上是减函数. 所以,f(-1)=2是极大值;f(1)=-2是极小值. (Ⅱ)【解析】 曲线方程为y=x3-3x,点A(0,16)不在曲线上. 设切点为M(x,y), 则点M的坐标满足y=x3-3x. 因f'(x)=3(x2-1), 故切线的方程为y-y=3(x2-1)(x-x) 注意到点A(0,16)在切线上,有16-(x3-3x)=3(x2-1)(0-x) 化简得x3=-8, 解得x=-2. 所以,切点为M(-2,-2),切线方程为9x-y+16=0.
复制答案
考点分析:
相关试题推荐
已知a>1,函数f(x)=loga(x2-ax+2)在x∈[2,+∞)时的值恒为正.
(1)a的取值范围;
(2)记(1)中a的取值范围为集合A,函数g(x)=log2(tx2+2x-2)的定义域为集合B.若A∩B≠∅,求实数t的取值范围.
查看答案
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m,n的值;如果不存在,说明理由.
查看答案
已知数列{an}是首项为manfen5.com 满分网,公比manfen5.com 满分网的等比数列,设manfen5.com 满分网,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若manfen5.com 满分网对一切正整数n恒成立,求实数m的取值范围.
查看答案
已知a>0且a≠1,设p:函数y=ax在R上单调递增,q:设函数y=manfen5.com 满分网,函数y≥1恒成立,若p∧q为假,p∨q为真,求实数a的取值范围.
查看答案
记函数f(x)=lg(x2-x-2)的定义域为集合A,函数manfen5.com 满分网的定义域为集合B.
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},C⊆A,求实数p的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.