满分5 > 高中数学试题 >

已知二次函数g(x)的图象经过坐标原点,且满足g(x+1)=g(x)+2x+1,...

已知二次函数g(x)的图象经过坐标原点,且满足g(x+1)=g(x)+2x+1,设函数f(x)=mg(x)-ln(x+1),其中m为非零常数
(1)求函数g(x)的解析式;
(2)当-2<m<0时,判断函数f(x)的单调性并且说明理由;
(3)证明:对任意的正整数n,不等式manfen5.com 满分网恒成立.
(1)设出g(x)=ax2+bx+c,由g(x)图象过原点顶点c=0,根据g(x+1)=g(x)+2x+1求出a和b即可顶点g(x)的解析式; (2)求出f(x)的定义域和其导函数,利用二次函数求出导函数的最大值小于0即导函数恒小于0,得到函数单调递减; (3)取m=1,得到f(x)的解析式,然后设h(x)=x3-f(x)=x3-x2+ln(x+1),求出h′(x)得到其恒大于0,h(x)在 (0,+∞)为增函数即h(x)大于h(0)=0,即可得到ln(x+1)>x2-x3恒成立,令x=(n为正整数)得证. 【解析】 (1)设g(x)=ax2+bx+c,g(x)的图象经过坐标原点,所以c=0. ∵g(x+1)=g(x)+2x+1∴a(x+1)2+b(x+1)=ax2+bx+2x+1 即:ax2+(2a+b)x+a+b=ax2+(b+2)x+1 ∴a=1,b=0,g(x)=x2; (2)函数f(x)=mx2-ln(x+1)的定义域为(-1,+∞)., 令k(x)=2mx2+2mx-1,,, ∵-2<m<0,∴,k(x)=2mx2+2mx-1<0在(-1,+∞)上恒成立, 即f′(x)<0,当-2<m<0时,函数f(x)在定义域(-1,+∞)上单调递减. (3)当m=1时,f(x)=x2-ln(x+1).,令h(x)=x3-f(x)=x3-x2+ln(x+1), 则在[0,+∞)上恒正, ∴h(x)在[0,+∞)上单调递增,当x∈(0,+∞)时,恒有h(x)>h(0)=0., 即当x∈(0,+∞)时,有x3-x2+ln(x+1)>0,ln(x+1)>x2-x3, 对任意正整数n,取得.
复制答案
考点分析:
相关试题推荐
某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是manfen5.com 满分网,求抽奖者获奖的概率;
(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.
查看答案
如图正三棱柱ABC-A1B1C1manfen5.com 满分网,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面NB1C;
(2)求A1C1与平面NB1C所成的角正弦值.

manfen5.com 满分网 查看答案
已知△ABC三个内角A,B,C的对边分别为a,b,c,manfen5.com 满分网,且manfen5.com 满分网
(1)求∠A的度数;
(2)若manfen5.com 满分网,a=6,求△ABC的面积.
查看答案
manfen5.com 满分网用α,β,γ三个字母组成一个长度为n+1(n∈N*)个字母的字符串,要求由α开始,相邻两个字母不同.例如n=1时,排出的字符串可能是αβ或αγ;n=2时排出的字符串可能是αβα,αβγ,αγα,αγβ(如图).若记这种n+1个字符串中,排在最后一个的字母仍是α的所有字符串的种数为an,可知,a1=0,a2=2;则a4=    ;数列{an}的前2n项之和a1+a2+a3+…+a2n=    查看答案
manfen5.com 满分网如图,已知△ABC和△BCD所在平面互相垂直,∠ABC=∠BCD=90°,AB=a,BC=b,CD=c,且a2+b2+c2=1,则三棱锥A-BCD的外接球的表面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.