满分5 > 高中数学试题 >

已知实数a≠0,函数f(x)=ax(x-2)2(x∈R). (1)若函数f(x)...

已知实数a≠0,函数f(x)=ax(x-2)2(x∈R).
(1)若函数f(x)有极大值32,求实数a的值;
(2)若对∀x∈[-2,1],不等式manfen5.com 满分网恒成立,求实数a的取值范围.
(1)求出f(x)的导函数,令导函数等于0求出此时x的值,因为函数有极大值32,把求得的x值代入函数解析式f(x)中求出函数值,让函数值等于32列出关于a的方程,求出方程的解即可得到a的值; (2)根据(1)求出的导函数等于0时x的值,分a大于0和a小于0,在闭区间[-2,1]上,分区间判断导函数的正负得到函数的单调区间,根据函数的增减性分别得到函数f(x)的最大值,让f(x)的最大值小于分别列出关于a的不等式,分别求出不等式的解集即可得到实数a的取值范围,求出的a的范围的并集即可得到所有满足题意的a的范围. 【解析】 (1)∵f(x)=ax(x-2)2=ax3-4ax2+4ax, ∴. 令f′(x)=0,解得, ∴或x=2. ∵f(x)=ax(x-2)2(x∈R)有极大值32,又f(2)=0. ∴f(x)在时取得极大值, ∴. (2)由知: 当a>0时,函数f(x)在上是增函数,在上是减函数. 此时,. 又对∀x∈[-2,1],不等式恒成立. ∴得, ∴. 当a<0时,函数f(x)在上是减函数,在上是增函数. 又f(-2)=-32a,f(1)=a, 此时,ymax=f(-2)=-32a. 又对∀x∈[-2,1],不等式恒成立. ∴得, ∴. 故所求实数的取值范围是.
复制答案
考点分析:
相关试题推荐
如果函数f(x)=ax(ax-3a2-1)(a>0且a≠1)在区间[0,+∞)上是增函数,那么实数a的取值范围是     查看答案
若函数f(x)=|4-x2|的定义域为[a,b],值域为[0,2],定义区间[a,b]的长度为b-a,则区间[a,b]长度的最小值为    查看答案
已知函数f(x)是偶函数,并且对于定义域内任意的x,满足manfen5.com 满分网,当1<x<2时,f(x)=x,则f(2010.5)=    查看答案
manfen5.com 满分网,若f(t)>2,则实数t的取值范围是     查看答案
已知直线y=x+2与曲线y=ln(x+a)相切,则a的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.