设a为实数,函数f(x+a)=(x+a)|x|,x∈R.
(1)求f(x)的解析式;
(2)若f(1)>2,求a的取值范围;
(3)当0≤x≤1时,求f(x)的最大值g(a).
考点分析:
相关试题推荐
已知函数f(x)=(1-2a)x
3+(9a-4)x
2+(5-12a)x+4a(a∈R).
(1)当a=0时,求函数f(x)的单调递增区间;
(2)若函数f(x)在区间[0,2]上的最大值为2,求a的取值范围.
查看答案
已知函数
.
(1)若f(x)=2,求x的值;
(2)若3
tf(2t)+mf(t)≥0对于
恒成立,求实数m的取值范围.
查看答案
某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P(元/件):前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升,其中4天的单价记录如表:
而这20天相应的销售量Q(百件/天)与x对应的点(x,Q)在如图所示的半圆上.
(1)写出每天销售收入y(元)与时间x(天)的函数关系式y=f(x);
(2)在这20天中哪一天销售收入最高?为使每天销售收入最高,按此次测试结果应将单价P定为多少元为好?(结果精确到1元)
查看答案
已知实数a≠0,函数f(x)=ax(x-2)
2(x∈R).
(1)若函数f(x)有极大值32,求实数a的值;
(2)若对∀x∈[-2,1],不等式
恒成立,求实数a的取值范围.
查看答案
如果函数f(x)=a
x(a
x-3a
2-1)(a>0且a≠1)在区间[0,+∞)上是增函数,那么实数a的取值范围是
.
查看答案