满分5 > 高中数学试题 >

下列说法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,+a+4...

下列说法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,+a+4])是偶函数,则实数b=2;②f(x)=manfen5.com 满分网既是奇函数又是偶函数;③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞]时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f=x•f(y)+y•f(x),则f(x)是奇函数.其中所有正确命题的序号是    
①由f(x)x∈[2a-1,a+4]是偶函数,则定义域关于原点对称,再由f(-x)=f(x)求解; ②将函数化简得:f(x)=0,x∈R,结论可知. ③设x<0,由-x>0,代入x∈[0,+∞]时,f(x)=x(1+x),再由f(x)是奇函数求解. ④通过赋值法,求得相应函数值,来寻求f(-x)与f(x)关系. 【解析】 ①∵f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函数, 则2a-1+a+4=0得a=-1,又∵f(-x)=f(x)可解得b=2;故①正确. ②将函数化简得:f(x)=0,x∈R,∴既是奇函数又是偶函数;故②正确. ③设x<0,由-x>0,又∵当x∈[0,+∞]时,f(x)=x(1+x) ∴f(-x)=-x(1-x), 又∵f(x)是定义在R上的奇函数 f(x)=-f(-x)=x(1-x) ∴当x∈R时,f(x)=x(1+|x|);故③正确. ④令x=y=0,得f(0)=0 再令x=1,y=-1,得f(-1)=f(-1)-f(1) ∴f(1)=0 再令x=y=-1,得f(1)=-f(1)-f(-1) ∴f(-1)=0 再令y=-1 得f(-x)=xf(-1)-f(x) 则,f(-x)=-f(x) ∴f(x)是奇函数.故④正确. 故答案为:①②③④
复制答案
考点分析:
相关试题推荐
若函数y=f(x)是函数y=ax(0<a≠1)的反函数,其图象经过点(manfen5.com 满分网,a),则函数y=f(x+manfen5.com 满分网-3)的值域为     查看答案
已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f(f(manfen5.com 满分网))的值是    查看答案
函数y=x2与函数y=xlnx在区间(1,+∞)上增长较快的一个是     查看答案
定义在[-2,2]上的偶函数f (x)在区间[一2,0]上单调递增.若f(2一m)<f(m),则实数m的取值范围是     查看答案
定义在R上的函数manfen5.com 满分网,若关于x的方程f2(x)+af(x)+b=3有3个不同实数解x1、x2、x3,且x1<x2<x3,则下列结论错误的是( )
A.x12+x22+x32=14
B.a+b=2
C.x1+x3>2x2
D.x1+x3=4
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.