满分5 > 高中数学试题 >

已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值 (1)求a...

已知函数f(x)=x3+ax2+bx+c在x=-manfen5.com 满分网与x=1时都取得极值
(1)求a、b的值与函数f(x)的单调区间.
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.
(1)求出f′(x),因为函数在x=-与x=1时都取得极值,所以得到f′(-)=0且f′(1)=0联立解得a与b的值,然后把a、b的值代入求得f(x)及f′(x),然后讨论导函数的正负得到函数的增减区间; (2)根据(1)函数的单调性,由于x∈[-1,2]恒成立求出函数的最大值值为f(2),代入求出最大值,然后令f(2)<c2列出不等式,求出c的范围即可. 解;(1)f(x)=x3+ax2+bx+c,f'(x)=3x2+2ax+b 由解得, f'(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表: x (-∞,-) - (-,1) 1 (1,+∞) f′(x) + - + f(x) ↑ 极大值 ↓ 极小值 ↑ 所以函数f(x)的递增区间是(-∞,-)和(1,+∞),递减区间是(-,1). (2), 当x=-时,f(x)=+c为极大值,而f(2)=2+c,所以f(2)=2+c为最大值. 要使f(x)<c2对x∈[-1,2]恒成立,须且只需c2>f(2)=2+c. 解得c<-1或c>2.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明PA∥平面EDB;
(2)求EB与底面ABCD所成的角的正切值.

manfen5.com 满分网 查看答案
等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.
(1)求an与bn
(2)求和:manfen5.com 满分网
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB-ccosB.
(I)求cosB的值;
(II)若manfen5.com 满分网,且manfen5.com 满分网,求a和c的值.
查看答案
令f(n)=log(n+1)(n+2)(n∈N*),如果对k(k∈N*),满足f(1)•f(2)…f(k)为整数,则称k为“好数”,那么区间[1,2008]内所有“好数”的和M=    查看答案
若直线mx+ny-3=0与圆x2+y2=3没有公共点,则m、n满足的关系式为    ;以(m,n)为点P的坐标,过点P的一条直线与椭圆manfen5.com 满分网+manfen5.com 满分网=1的公共点有    个. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.