满分5 > 高中数学试题 >

如图,在正方体ABCD-A1B1C1D1中,E、F 为棱AD、AB的中点. (Ⅰ...

manfen5.com 满分网如图,在正方体ABCD-A1B1C1D1中,E、F 为棱AD、AB的中点.
(Ⅰ)求证:EF∥平面CB1D1
(Ⅱ)求证:平面CAA1C1⊥平面CB1D1
(Ⅰ)欲证EF∥平面CB1D1,根据直线与平面平行的判定定理可知只需证EF与平面CB1D1内一直线平行,连接BD,根据中位线可知EF∥BD,则EF∥B1D1,又B1D1⊂平面CB1D1,EF⊄平面CB1D1,满足定理所需条件; (Ⅱ)欲证平面CAA1C1⊥平面CB1D1,根据面面垂直的判定定理可知在平面CB1D1内一直线与平面CAA1C1垂直,而AA1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,则AA1⊥B1D1,A1C1⊥B1D1,满足线面垂直的判定定理则B1D1⊥平面CAA1C1,而B1D1⊂平面CB1D1,满足定理所需条件. 【解析】 (Ⅰ)证明:连接BD. 在正方体AC1中,对角线BD∥B1D1. 又因为E、F为棱AD、AB的中点, 所以EF∥BD. 所以EF∥B1D1.(4分) 又B1D1⊂平面CB1D1,EF⊄平面CB1D1, 所以EF∥平面CB1D1.(7分) (Ⅱ)因为在长方体AC1中, AA1⊥平面A1B1C1D1,而B1D1⊂平面A1B1C1D1, 所以AA1⊥B1D1.(10分) 又因为在正方形A1B1C1D1中,A1C1⊥B1D1, 所以B1D1⊥平面CAA1C1.(12分) 又因为B1D1⊂平面CB1D1, 所以平面CAA1C1⊥平面CB1D1.(14分)
复制答案
考点分析:
相关试题推荐
设直线l1:3x+4y-5=0直线l2:2x-3y+8=0的交点M,求:
(1)过点M与直线l:2x+4y-5=0平行的直线方程;
(2)过点M且在y轴上的截距为4的直线方程.
查看答案
已知直线l的方程为3x+4y-25=0,则圆x2+y2=1上的点到直线l的距离的最小值是     查看答案
已知空间四点中无任何三点共线,那么这四点可以确定平面的个数是     查看答案
圆x2+y2+2x+6y+9=0与圆x2+y2-6x+2y+1=0的位置关系是     查看答案
已知A(-1,2,3),B(3,0,2),则|AB|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.