本题考查的知识点是古典概型的意义,关键是要找出连续抛掷两次骰子分别得到的点数m,n作为点P的坐标所得P点的总个数,及点P落在圆x2+y2=10内(含边界)的个数,代入古典概型计算公式即可求解.
【解析】
连续抛掷两次骰子分别得到的点数m,n作为点P的坐标所得P点有:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).共36个
其中落在圆x2+y2=10内(含边界)的有:
(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个
故点P落在圆x2+y2=10内(含边界)的概率P==
故选A