满分5 > 高中数学试题 >

定义F(x,y)=(1+x)y,x,y∈(0,+∞) (1)令函数f(x)=F(...

定义F(x,y)=(1+x)y,x,y∈(0,+∞)
(1)令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线c1,曲线c1与y轴交于点A(0,m),过坐标原点O作曲线c1的切线,切点为B(n,t)(n>0)设曲线c1在点A、B之间的曲线段与OA、OB所围成图形的面积为S,求S的值;
(2)当x,y∈N*且x<y时,证明F(x,y)>F(y,x).
(1)求出f(x)的解析式,求出A的坐标,利用曲线在切点处的导数值是曲线的切线斜率,切点在曲线上,列出方程组求出B的坐标,将曲边图象的面积用定积分表示,利用微积分基本定理求出面积. (2)构造函数h(x),求出其导函数判断导函数的符号,判断出h(x)的单调性,利用其单调性得到不等式,利用不等式的性质得证. 【解析】 (1)∵F(x,y)=(1+x)y ∴f(x)=F(1,log2(x2-4x+9))=2log2(x2-4x+9)=x2-4x+9 故A(0,9) f'(x)=2x-4,过O作C1的切线,切点为B(n,t)(n>0), ∴解得B(3,6) ∴ (2)令 令∴ ∴P(x)在[0,+∞)单调递减. ∴当x>0时,有P(x)<P(0), ∴当x≥1时有h'(x)<0∴h(x)在[1,+∞)上单调递减. ∴1≤x<y时,有 yln(1+x)>xln(1+y) ∴(1+x)y>(1+y)x ∴当x,y∈N*且x<y时,F(x,y)>F(y,x)
复制答案
考点分析:
相关试题推荐
定义:两个连续函数(图象不间断)f(x),g(x)在区间[a,b]上都有意义,我们称函数|f(x)+g(x)|在[a,b]上的最大值叫做函数f(x)与g(x)在区间[a,b]上的“绝对和”.
(1)试求函数f(x)=x2与g(x)=x(x+2)(x-4)在闭区间[-2,2]上的“绝对和”.
(2)设hm(x)=-4x+m及f(x)=x2都是定义在闭区间[1,3]上,记hm(x)与f(x)的“绝对和”为Dm,如果D(m)的最小值是D(m),则称f(x)可用manfen5.com 满分网“替代”,试求m的值,使f(x)可用manfen5.com 满分网“替代”.
查看答案
诺贝尔奖发放方式为:每年一闪,把奖金总额平均分成6份,奖励在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息用于基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔奖发放后基金总额约为19800万美元.设f(x)表示为第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依此类推)
(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;
(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.
(参考数据:1.062410=1.83,1.031210=1.36)
查看答案
已知一组数据2008,2009,2010,2011,2012,则这组数据的方差是 ______
查看答案
如图所示,角A为钝角,且manfen5.com 满分网,点P、Q分别在角A的两边上.
(1)AP=5,PQ=manfen5.com 满分网,求AQ的长;
(2)设manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
解关于x的不等式:x2-(a+a2)x+a3>0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.