因为当a等于0时,函数在区间上的最大值不为1,所以得到a不等于0,即可得到函数为二次函数,找出f(x)的对称轴方程,分三种情况考虑:当f(-)等于1时,代入函数解析式即可求出a的值,然后求出对称轴方程,经过判断发现a要小于0时,顶点取得最大值,与f(-)等于1矛盾,不合题意;当f(2)等于1时,代入函数解析式即可求出a的值,同理求出函数的对称轴方程,判断f(2)为最大值符合题意;当顶点为最高点时,得到f(x)=1,代入解析式即可求出a的值,经过验证得到满足题意的a的值,综上,得到满足题意的所有a的值.
【解析】
a=0时,f(x)=-x-3,f(x)在上不能取得1,
故a≠0,则f(x)=ax2+(2a-1)x-3(a≠0)的对称轴方程为x=,
①令,解得a=-,
此时x=-,
∵a<0,∴f(x)最大,所以不合适;
②令f(2)=1,解得a=,
此时x=-
因为a=且距右端2较远,所以f(2)最大合适;
③令f(x)=1,得a=,经验证a=
综上,a=或a=.