已知函数f(x)=ax
2-|x|+2a-1(a为实常数).
(1)若a=1,求f(x)的单调区间;
(2)若a>0,设f(x)在区间[1,2]的最小值为g(a),求g(a)的表达式;
(3)设
,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围.
考点分析:
相关试题推荐
设定义在R的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x<1时,f(x)=2
x-1.则
=
.
查看答案
函数y=f(x)是定义域为R的奇函数,当x<0时,
,则函数的解析式f(x)=
.(结果用分段函数表示)
查看答案
已知函数f(x)=ax
2+(b-3)x+3,x∈[a
2-2,a]是偶函数,则a+b=
.
查看答案
若对任意x∈A,y∈B,(A⊆R,B⊆R)有唯一确定的f(x,y)与之对应,则称f(x,y)为关于x、y的二元函数.现定义满足下列性质的二元函数f(x,y)为关于实数x、y的广义“距离”;
(1)非负性:f(x,y)≥0,当且仅当x=y时取等号;
(2)对称性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z均成立.
今给出三个二元函数,请选出所有能够成为关于x、y的广义“距离”的序号:
①f(x,y)=|x-y|;②f(x,y)=(x-y)
2;③
.
能够成为关于的x、y的广义“距离”的函数的序号是
.
查看答案
作为对数运算法则:lg(a+b)=lga+lgb(a>0,b>0)是不正确的.但对一些特殊值是成立的,例如:lg(2+2)=lg2+lg2.那么,对于所有使lg(a+b)lga+lgb(a>0,b>0)成立的a,b应满足函数a=f(b)表达式为
.
查看答案