(1)先对函数f(x)求导,根据f′(2)=0可求出a的值,再由导数大于0时原函数单调递增,导数小于0时原函数单调递减可得答案.
(2)先求出函数g(x)的解析式然后求导,再由导数大于0时原函数单调递增,导数小于0时原函数单调递减可得答案.
【解析】
(Ⅰ)f′(x)=3ax2-6x=3x(ax-2),因为x=2是函数y=f(x)的极值点,
所以f′(2)=0,即6(2a-2)=0,因此a=1.
经验证,当a=1时,x=2是函数y=f(x)的极值点.所以f′(x)=3x2-6x=3x(x-2).
所以y=f(x)的单调增区间是(-∞,0),(2,+∞);单调减区间是(0,2)
(Ⅱ)g(x)=ex(x3-3x2),
g′(x)=ex(x3-3x2+3x2-6x)=ex(x3-6x)=,
因为ex>0,所以,y=g(x)的单调增区间是,;
单调减区间是,.