画出圆M,切点分别为E、D、G,由切线长相等定理知F1G=F1E,PD=PE,F2D=F2G,根据椭圆的定义知PF1+PF2=2a,PF1+PF2=F1E+DF2(PD=PE)=F1G+F2D(F1G=F1E)=F1G+F2G=2a,由此入手知M点的轨迹是垂直于x轴的一条直线(除去A点).
【解析】
如图画出圆M,切点分别为E、D、G,
由切线长相等定理知
F1G=F1E,PD=PE,F2D=F2G,
根据椭圆的定义知PF1+PF2=2a,
∴PF1+PF2=F1E+DF2(PD=PE)
=F1G+F2D(F1G=F1E)
=F1G+F2G=2a,
∴2F2G=2a-2c,F2G=a-c,
即点G与点A重合,
∴点M在x轴上的射影是长轴端点A,
M点的轨迹是垂直于x轴的一条直线(除去A点);
故选A.