满分5 > 高中数学试题 >

如图,在直三棱柱ABC-A1B1C1中,,M为侧棱CC1上一点,AM⊥BA1. ...

如图,在直三棱柱ABC-A1B1C1中,manfen5.com 满分网,M为侧棱CC1上一点,AM⊥BA1
(Ⅰ)求证:AM⊥平面A1BC;
(Ⅱ)求二面角B-AM-C的大小.

manfen5.com 满分网
(Ⅰ)欲证AM⊥平面A1BC,根据直线与平面垂直的判定定理可知只需证AM与平面A1BC内两相交直线垂直,而BC⊥AM,AM⊥BA1,BC∩BA1=B,满足定理条件; (Ⅱ)设AM与A1C的交点为O,连接BO,根据二面角平面角的定义可知∠BOC为二面角B-AM-C的平面角,在Rt△BCO中求解此角即可. 证明:(Ⅰ)在直三棱柱ABC-A1B1C1中, 易知面ACC1A1⊥面ABC,∵∠ACB=90°, ∴BC⊥面ACC1A1. ∵AM⊆面ACC1A1,∴BC⊥AM.∵AM⊥BA1, 且BC∩BA1=B,∴AM⊥平面A1BC. 【解析】 (Ⅱ)设AM与A1C的交点为O,连接BO, 由(Ⅰ)可知AM⊥OB,且AM⊥OC, 所以∠BOC为二面角B-AM-C的平面角. 在Rt△ACM和Rt△A1AC中,∠OAC+∠ACO=90°, ∴∠AA1C=∠MAC.∴Rt△ACM∽Rt△A1AC.∴AC2=MC•AA1. ∴. ∴在Rt△ACM中,.∵, ∴CO=1. ∴在Rt△BCO中,. ∴∠BOC=45°,故所求二面角的大小为45°.
复制答案
考点分析:
相关试题推荐
已知圆C方程为:x2+y2=4.
(Ⅰ)直线l过点P(1,2),且与圆C交于A、B两点,若manfen5.com 满分网,求直线l的方程;
(Ⅱ)过圆C上一动点M作平行于x轴的直线m,设m与y轴的交点为N,若向量manfen5.com 满分网,求动点Q的轨迹方程,并说明此轨迹是什么曲线.
查看答案
在三角形ABC中,∠A、∠B、∠C的对边分别为a、b、c,若bcosC=(2a-c)cosB
(Ⅰ)求∠B的大小
(Ⅱ)若manfen5.com 满分网、a+c=4,求三角形ABC的面积.
查看答案
已知直平行六面体ABCD-A1B1C1D1的各条棱长均为3,∠BAD=60°.长为2的线段MN的一个端点M在DD1上运动,另一个端点N在底面ABCD上运动,则线段MN的中点P的轨迹(曲面)与共一个顶点D的三个面所围成的几何体的体积为     查看答案
已知x、y满足约束条件manfen5.com 满分网,则z=(x+3)2+y2的最小值为    查看答案
已知正四棱锥P-ABCD,PA=2,AB=manfen5.com 满分网,M是侧棱PC的中点,则异面直线PA与BM所成角为    manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.