(I)连接AC1交A1C于点G,连接DG,在正三棱柱ABC-A1B1C1中,四边形ACC1A1是平行四边形,则AC=GC1,而AD=DB,则DG∥BC1,DG⊂平面A1DC,BC1⊄平面A1DC,根据线面平行的判定定理可知BC1∥平面A1DC.
(II)过点D作DE⊥AC交AC于E,过点D作DF⊥A1C交A1C于F,连接EF,而平面ABC⊥面平ACC1A1,DE⊂平面ABC,平面ABC∩平面ACC1A1=AC,
根据面面垂直的性质定理可知DE⊥平ACC1A1,则EF是DF在平面ACC1A1内的射影,则EF⊥A1C,从而∠DFE是二面角D-A1C-A的平面角,在直角三角形ADC中,求出DE、DF,即可求出∠DFE.
(I)证明:连接AC1交A1C于点G,连接DG,
在正三棱柱ABC-A1B1C1中,四边形ACC1A1是平行四边形,
∴AC=GC1,
∵AD=DB,
∴DG∥BC1(2分)
∵DG⊂平面A1DC,BC1⊄平面A1DC,
∴BC1∥平面A1DC.(4分)
(II)【解析】
过点D作DE⊥AC交AC于E,过点D作DF⊥A1C交A1C于F,连接EF.
∵平面ABC⊥面平ACC1A1,DE⊂平面ABC,平面ABC∩平面ACC1A1=AC,
∴DE⊥平ACC1A1.
∴EF是DF在平面ACC1A1内的射影.
∴EF⊥A1C,
∴∠DFE是二面角D-A1C-A的平面角,(8分)
在直角三角形ADC中,.
同理可求:.
∴.
∴.
∴.(12分)