(1)由已知可得2Sn-1=an-1+an-12(n≥2从而导出an+an-1=(an+an-1)(an-an-1)∵an,an-1均为正数,所以an-an-1=1(n≥2),由此推出an=n.
(2)由题设条件易得c1<c2,c2>c3>c4>猜想n≥2时,{cn}是递减数列.令,能够推出在[3,+∞)内f(x)为单调递减函数.由.由此能够推出数列{cn}中的最大项为.
【解析】
(1)由已知:对于n∈N*,总有2Sn=an+an2①成立
∴2Sn-1=an-1+an-12(n≥2)②
①②得2an=an+an2-an-1-an-12
∴an+an-1=(an+an-1)(an-an-1)∵an,an-1均为正数,
∴an-an-1=1(n≥2)
∴数列{an}是公差为1的等差数列又n=1时,2S1=a1+a12,解得a1=1.
∴an=n.
(2)【解析】
由已知,,
易得c1<c2,c2>c3>c4>猜想n≥2时,{cn}是递减数列.
令
∵当x≥3时,lnx>1,则1-lnx<0,即f'(x)<0.
∴在[3,+∞)内f(x)为单调递减函数.
由.
∴n≥2时,{lncn}是递减数列.即{cn}是递减数列.
又c1<c2,∴数列{cn}中的最大项为.