满分5 > 高中数学试题 >

设△ABC的内角A,B,C所对的边长分别为a,b,c,且atanB=,bsinA...

设△ABC的内角A,B,C所对的边长分别为a,b,c,且atanB=manfen5.com 满分网,bsinA=4.
(Ⅰ)求cosB和边长a;
(Ⅱ)若△ABC的面积S=10,求cos4C的值.
(Ⅰ)首先由正弦定理求出asinB的值,然后利用弦切互化关系结合已知条件即可求出cosB,再由cosB求得sinB、tanB,则求得a; (Ⅱ)先由三角形面积公式求出c,则可得A=C,再利用余弦定理把cos4C用A+C的三角函数表示,进而用B的三角函数表示,则问题解决. 【解析】 (Ⅰ)因为,所以asinB=bsinA=4, 又atanB=,即, 所以cosB=; 则sinB=,tanB=, 所以a==5. (Ⅱ)由S=acsinB=×4c=10,得c=5. 又a=5,所以A=C. 所以cos4C=2cos22C-1 =2cos2(A+C)-1 =2cos2B-1 =2×-1 =-.
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网=(sinx,cosx+sinx),manfen5.com 满分网=(2cosx,cosx-sinx),x∈R,设函数f(x)=manfen5.com 满分网manfen5.com 满分网
(I)求manfen5.com 满分网的值及函数f(x)的最大值;
(II)求函数f(x)的单调递增区间.
查看答案
对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[-1.08]=-2等,定义函数f(x)=x-[x],给出以下命题:
①函数f(x)的最小值为0;
②方程f(x)=manfen5.com 满分网有且仅有一个解;
③函数f(x)是增函数;
④函数f(x)是周期函数.
其中正确命题的序号为    查看答案
若实数x,y满足不等式组manfen5.com 满分网,则3x+2y的最大值是    查看答案
manfen5.com 满分网统计某校1000名学生的数学会考成绩,得到样本频率分布直方图如图示,规定不低于60分为及格,不低于80分为优秀,则及格人数是    ;优秀率为    查看答案
已知tanα=-manfen5.com 满分网,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.