满分5 > 高中数学试题 >

如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均...

如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀.每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1.两个2.两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.
(1)求点P恰好返回到A点的概率;
(2)在点P转一圈恰能返回到A点的所有结果中,用随机变量S表示点P恰能返回到A点的投掷次数,求S的数学期望.

manfen5.com 满分网
(1)求点P恰好返回到A点的概率,首先我们要对回到A点的情况分类讨论,由于回到原点最少需要两次投掷,最多需要四次投掷,故我们可以分两次、三次、四次,四种情况进行讨论,计算出每种情况性质的概率,相加即得结果. (2)由(1)的结论我们不难得到ξ的值分别等2,3,4时的概率,然后我们代入数学期望公式即可求解. 【解析】 (Ⅰ)投掷一次正方体玩具,上底面每个数字的出现都是等可能的,其概率为 因为只投掷一次不可能返回到A点; 若投掷两次点P就恰能返回到A点, 则上底面出现的两个数字应依次为: (1,3).(3,1).(2,2)三种结果, 其概率为= 若投掷三次点P恰能返回到A点,则上底面出现的三个数字应依次为: (1,1,2).(1,2,1).(2,1,1)三种结果,其概率为= 若投掷四次点P恰能返回到A点,则上底面出现的四个数字应依次为:(1,1,1,1) 其概率为= 所以,点P恰好返回到A点的概率为P=P2+P3+P4== (Ⅱ)在点P转一圈恰能返回到A点的所有结果共有以上问题中的7种, 因为,P(ξ=2)=,P(ξ=3)=,P(ξ=4)= 所以,Eξ==
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网若y=f(x)的图象如图所示,定义F(x)=manfen5.com 满分网,x∈[0,1],则下列对F(x)的性质描述正确的有   
(1)F(x)是[0,1]上的增函数;
(2)F′(x)=f(x);
(3)F(x)是[0,1]上的减函数;
(4)∃x∈[0,1]使得F(1)=f(x). 查看答案
观察下列等式:观察下列等式:
Cmanfen5.com 满分网+Cmanfen5.com 满分网=23-2,
Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网=27+23
Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网=211-25
Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网=215+27

由以上等式推测到一个一般结论:
对于n∈N*,Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网+…+Cmanfen5.com 满分网=    查看答案
已知cn1+cn2+cn3+…+cnn=63,则(x-manfen5.com 满分网n的展开式中的常数项为    查看答案
2010年清华大学、中国科学技术大学等五所名校首次进行联合自主招生,同时向一所重点中学的五位学习成绩优秀,并在某些方面有特长的学生发出提前录取通知单.若这五名学生都乐意进这五所大学中的任意一所就读,则仅有两名学生录取到同一所大学(其余三人在其他学校各选一所不同大学)的概率是    查看答案
给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在manfen5.com 满分网上不是凸函数的是( )
A.f(x)=sinx+cos
B.f(x)=lnx-2
C.f(x)=-x3+2x-1
D.f(x)=-xe-x
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.