满分5 > 高中数学试题 >

已知函数 (1)若函数f(x)在定义域内单调递增,求a的取值范围; (2)若且关...

已知函数manfen5.com 满分网
(1)若函数f(x)在定义域内单调递增,求a的取值范围;
(2)若manfen5.com 满分网且关于x的方程manfen5.com 满分网在[1,4]上恰有两个不相等的实数根,求实数b的取值范围;
(3)设各项为正的数列{an}满足:a1=1,an+1=lnan+an+2,n∈N*用数学归纳法证明:an≤2n-1
(1)对函数f(x)进行求导,令导数大于等于0在x>0上恒成立即可. (2)将a的值代入整理成方程的形式,然后转化为函数考虑其图象与x轴的交点的问题. (3)设h(x)=lnx-x+1然后求导,可判断函数h(x)的单调性,再由数学归纳法得证. 【解析】 (I)f'(x)=-(x>0) 依题意f'(x)≥0在x>0时恒成立,即ax2+2x-1≤0在x>0恒成立. 则a≤=在x>0恒成立, 即a≤(x>0) 当x=1时,取最小值-1 ∴a的取值范围是(-∞,-1]. (II)a=-,f(x)=-x+b∴ 设g(x)=则g'(x)=列表: ∴g(x)极小值=g(2)=ln2-b-2,g(x)极大值=g(1)=-b-, 又g(4)=2ln2-b-2 ∵方程g(x)=0在[1,4]上恰有两个不相等的实数根. 则,得ln2-2<b≤-. (III)设h(x)=lnx-x+1,x∈[1,+∞),则h'(x)= ∴h(x)在[1,+∞)为减函数,且h(x)max=h(1)=0,故当x≥1时有lnx≤x-1. ∵a1=1 假设ak≥1(k∈N*),则ak+1=lnak+ak+2>1,故an≥1(n∈N*) 从而an+1=lnan+an+2≤2an+1∴1+an+1≤2(1+an)≤…≤2n(1+a1) 即1+an≤2n,∴an≤2n-1
复制答案
考点分析:
相关试题推荐
一个口袋中装有大小相同的n个红球(n≥5且n∈N)和5个白球,每次从中任取两个球,当两个球的颜色不同时,则规定为中奖.
(1)试用n表示一次取球中奖的概率p;
(2)记从口袋中三次取球(每次取球后全部放回)恰有一次中奖的概率为m,求n的最大值;
(3)在(Ⅱ)的条件下,当m取得最大值时将5个白球全部取出后,对剩下的n个红球作如下标记:记上i号的有i个(i=1,2,3,4)),其余的红球记上0号,现从袋中任取一球,X表示所取球的标号,求X的分布列、期望.
查看答案
已知(x+1)n=a+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,(其中n∈N*
(1)求a及Sn=a1+a2+a3+…+an
(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.
查看答案
如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀.每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1.两个2.两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.
(1)求点P恰好返回到A点的概率;
(2)在点P转一圈恰能返回到A点的所有结果中,用随机变量S表示点P恰能返回到A点的投掷次数,求S的数学期望.

manfen5.com 满分网 查看答案
manfen5.com 满分网若y=f(x)的图象如图所示,定义F(x)=manfen5.com 满分网,x∈[0,1],则下列对F(x)的性质描述正确的有   
(1)F(x)是[0,1]上的增函数;
(2)F′(x)=f(x);
(3)F(x)是[0,1]上的减函数;
(4)∃x∈[0,1]使得F(1)=f(x). 查看答案
观察下列等式:观察下列等式:
Cmanfen5.com 满分网+Cmanfen5.com 满分网=23-2,
Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网=27+23
Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网=211-25
Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网=215+27

由以上等式推测到一个一般结论:
对于n∈N*,Cmanfen5.com 满分网+Cmanfen5.com 满分网+Cmanfen5.com 满分网+…+Cmanfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.