满分5 > 高中数学试题 >

在平面直角坐标系xoy中,曲线C1的参数方程为(θ为参数),以坐标原点O为极点,...

在平面直角坐标系xoy中,曲线C1的参数方程为manfen5.com 满分网(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cosθ-4sinθ(ρ>0).
(Ⅰ)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.
(Ⅰ)先根据同角三角函数的关系消去参数θ可求出曲线C1的普通方程,然后利用极坐标公式ρ2=x2+y2,x=ρcosθ,y=ρsinθ进行化简即可求出曲线C2普通方程,结合方程说明所表示曲线; (Ⅱ)先求出曲线C1与x轴的一个交点P的坐标,然后设出直线方程,利用圆心到直线的距离等于半径建立等式关系,求出斜率,的到直线方程. 【解析】 (Ⅰ)曲线C1:;曲线C2:(x-1)2+(y+2)2=5;(3分) 曲线C1为中心是坐标原点,焦点在x轴上,长半轴长是4,短半轴长是2的椭圆; 曲线C2为圆心为(1,-2),半径为的圆(2分) (Ⅱ)曲线C1:与x轴的交点坐标为(-4,0)和(4,0),因为m>0, 所以点P的坐标为(4,0),(2分) 显然切线l的斜率存在,设为k,则切线l的方程为y=k(x-4), 由曲线C2为圆心为(1,-2),半径为的圆得, 解得,所以切线l的方程为(3分)
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,过点D作⊙O的切线交BC于E,AE交⊙O于点F.
(1)证明:E是BC的中点;
(2)证明:AD•AC=AE•AF.

manfen5.com 满分网 查看答案
已知函数f(x)=(x2+ax+a)e-x,(a为常数,e为自然对数的底).
(Ⅰ)若函数f(x)在x=0时取得极小值,试确定a的取值范围;
(Ⅱ)在(Ⅰ)的条件下,设由f(x)的极大值构成的函数为g(x),试判断曲线g(x)只可能与直线2x-3y+m=0、3x-2y+n=0(m,n为确定的常数)中的哪一条相切,并说明理由.
查看答案
已知函数manfen5.com 满分网
(1)若函数f(x)在定义域内单调递增,求a的取值范围;
(2)若manfen5.com 满分网且关于x的方程manfen5.com 满分网在[1,4]上恰有两个不相等的实数根,求实数b的取值范围;
(3)设各项为正的数列{an}满足:a1=1,an+1=lnan+an+2,n∈N*用数学归纳法证明:an≤2n-1
查看答案
一个口袋中装有大小相同的n个红球(n≥5且n∈N)和5个白球,每次从中任取两个球,当两个球的颜色不同时,则规定为中奖.
(1)试用n表示一次取球中奖的概率p;
(2)记从口袋中三次取球(每次取球后全部放回)恰有一次中奖的概率为m,求n的最大值;
(3)在(Ⅱ)的条件下,当m取得最大值时将5个白球全部取出后,对剩下的n个红球作如下标记:记上i号的有i个(i=1,2,3,4)),其余的红球记上0号,现从袋中任取一球,X表示所取球的标号,求X的分布列、期望.
查看答案
已知(x+1)n=a+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,(其中n∈N*
(1)求a及Sn=a1+a2+a3+…+an
(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.