满分5 > 高中数学试题 >

已知数列{an}满足:a1=1,a2=,且an+2=. (I)求证:数列为等差数...

manfen5.com 满分网已知数列{an}满足:a1=1,a2=manfen5.com 满分网,且an+2=manfen5.com 满分网
(I)求证:数列manfen5.com 满分网为等差数列;
(II)求数列{an}的通项公式;
(III)求下表中前n行所有数的和Sn
(1)把所给的递推式整理,构造要求的数列形式,仿写一个递推式,用数列的后一项去减前一项,合并同类项,发现满足等差中项公式,得到结论. (2)写出(1)中的数列通项,用叠乘的方法把其他项都约去,得到第n项和第一项,因第一项可求出结果,所以得到通项公式. (3)根据表中构造的新数列,由它的特点写出第n行的各数之和,代入所求数列的通项,整理出组合数形式,用二项式定理的各项系数之间的关系,得到第n行的各数之和,于是构造一个新数列用等比数列前n项和公式求解. 【解析】 (I)∵ = =, ∴, ∴数列满足等差中项公式为等差数列. (II)由(I)得 故当n≥2时, 即 又当n=1时,满足上式 所以通项公式为. (III)∵ ∴第n行各数之和 ∴表中前n行所有数的和 Sn=(22-2)+(23-2)++(2n+1-2) =(22+23++2n+1)-2n = =2n+2-2n-4
复制答案
考点分析:
相关试题推荐
设M(-manfen5.com 满分网,0),N(manfen5.com 满分网,0),动点P满足条件kPM•kPN=manfen5.com 满分网,记点P的轨迹为C,点R(-3,0),过点R且倾斜角为30的直线l交轨迹C于A、B两点.
(1)求直线l和轨迹C的方程;
(2)点F1(-2,0),求manfen5.com 满分网manfen5.com 满分网
(3)在直线l上有两个不重合的动点C、D,以CD为直径且过点F1的所有圆中,求面积最小的圆的半径长.
查看答案
已知函数f(x)=x2+ax-lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存 在,求出a的值;若不存在,说明理由.
查看答案
如图三棱柱ABC-A1B1C1中,所有棱长均为2,∠CBB1=∠ABB1=120°,平面CBB1C1⊥平面ABB1A1,M是BA1中点,N是CB1中点.求证:MN∥平面ABC.

manfen5.com 满分网 查看答案
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为manfen5.com 满分网,乙投篮命中的概率为manfen5.com 满分网
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(I)若manfen5.com 满分网,求向量manfen5.com 满分网manfen5.com 满分网的夹角θ:
(II)当x∈R时,求函数f(x)=2manfen5.com 满分网-manfen5.com 满分网+1的最小正周期T.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.