满分5 >
高中数学试题 >
如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设...
如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为
.
考点分析:
相关试题推荐
如图,PA切⊙O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转60°到OD,则PD的长为
.
查看答案
如图,Rt△ABC中,AC⊥BC,D在边AC上,已知BC=2,CD=1,∠ABD=45°,则AD=( )
A.2
B.5
C.4
D.1
查看答案
设二次函数f(x)=ax
2+bx+c(a,b,c∈R,a≠0)满足条件:
(1)当x∈R时,f(x-4)=f(2-x),且f(x)≥x:
(2)当x∈(0,2)时,f(x)≤
;
(3)f(x)在R上的最小值为0.
求最大的m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.
查看答案
经过调查发现,某种新产品在投放市场的30天中,前20天其价格直线上升,后10天价格呈直线下降趋势.现抽取其中4天的价格如下表所示:
(1)写出价格f(x)关于时间x的函数表达式(x表示投放市场的第x天)
(2)若销售量g(x)与时间x的函数关系式为:g(x)=-x+50(1≤x≤30,x∈N),问该产品投放市场第几天,日销售额最高?
时间 | 第4天 | 第12天 | 第20天 | 第28天 |
价格(千元) | 34 | 42 | 50 | 34 |
查看答案
设函数f(x)=sin(2x+∅)(-π<φ<0),y=f(x)图象的一条对称轴是直线
.
(I)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.
(II)求函数y=f(x)的单调增区间;
(III)画出函数y=f(x)在区间[0,π]上的图象.
查看答案