满分5 > 高中数学试题 >

设有关于x的一元二次方程x2-2ax+b2=0. (1)若a是从0、1、2、3四...

设有关于x的一元二次方程x2-2ax+b2=0.
(1)若a是从0、1、2、3四个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率.
(2)若a是从区间[0,3]内任取的一个数,b=2,求上述方程没有实根的概率.
(1)由题意知本题是一个古典概型,根据题意先做出方程没有实根的充要条件,列举出试验发生的所有事件,看出符合条件的事件,根据古典概型公式得到结果. (2)由题意知本题是一个几何概型,根据前面做出的方程没有实根的充要条件,写出试验发生的所有事件包含的元素,和符合条件的元素的集合,根据几何概型公式得到结果. 【解析】 由题意知本题是一个古典概型, 设事件A为“方程x2-2ax+b2=0无实根” 当a>0,b>0时,方程x2-2ax+b2=0无实根的充要条件为 △=4a2-4b2=4(a2-b2)<0,即a<b (1)基本事件共12个:(0,0)(0,1),(0,2),(1,0)(1,1),(1,2),(2,0),(2,1), (2,2),(3,0),(3,1),(3,2). 其中第一个数表示a的取值,第二个数表示b的取值. 事件A包含3个基本事件(0,1),(0,2)(1,2), ∴事件A发生的概率为P(A)==. (2)由题意知本题是一个几何概型, 试验的所有基本事件所构成的区域为:{(a,b)|0≤a≤3,b=2}, 其中构成事件B的区域为{(a,b)|0≤a≤3,b=2,a<b} ∴所求概率为P(B)=.
复制答案
考点分析:
相关试题推荐
设命题p:函数f(x)=(a+2)x是R上的增函数,命题q:方程x2+2x+a=0有解,若“p且q”为假命题,“p或q”为真命题,求实数a的取值范围.
查看答案
某厂生产的8件产品中,有6件正品,2件次品,正品与次品在外观上没有区别.从这8件产品中任意抽检2件,计算:
(1)2件都是正品的概率;
(2)如果抽检的2件产品中有次品,则这一批产品将被退货,求这批产品被退货的概率.
查看答案
为了检测某产品的质量,抽取了一个容量为100的样本,数据的分组及频数如下表:
manfen5.com 满分网
(1)写出上面频率分布表中a,b,c的值:
(2)计算数据落在[10.95,11.25)范围内的概率.
查看答案
已知双曲线manfen5.com 满分网的离心率为manfen5.com 满分网
(1)求m的值,并写出双曲线的渐近线方程;
(2)求以双曲线的中心为顶点,双曲线的右顶点为焦点的抛物线方程.
查看答案
用计算机随机产生的有序二元数组(x,y),满足-1<x<1,-1<y<1,对每一个二元数组(x,y),用计算机计算x2+y2的值,记A为事件“x2+y2>1”,则事件A发生的概率是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.