满分5 > 高中数学试题 >

用“辗转相除法”求得459和357的最大公约数是( ) A.3 B.9 C.17...

用“辗转相除法”求得459和357的最大公约数是( )
A.3
B.9
C.17
D.51
用459除以357,得到商是1,余数是102,用357除以102,得到商是3,余数是51,用102除以51得到商是2,没有余数,得到两个数字的最大公约数是51. 【解析】 ∵459÷357=1…102, 357÷102=3…51, 102÷51=2, ∴459和357的最大公约数是51, 故选D.
复制答案
考点分析:
相关试题推荐
设椭圆M:manfen5.com 满分网(a>b>0)的离心率为manfen5.com 满分网,长轴长为manfen5.com 满分网,设过右焦点F倾斜角为θ的直线交椭圆M于A,B两点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)求证|AB|=manfen5.com 满分网
(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB|+|CD|的最小值.
查看答案
已知函数f ( x )=3x,f ( a+2 )=18,g ( x )=λ•3ax-4x的义域为[0,1].
(Ⅰ)求a的值;
(Ⅱ)若函数g ( x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.
查看答案
某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门.该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同.
(Ⅰ)求3个学生选择了3门不同的选修课的概率;
(Ⅱ)求恰有2门选修课这3个学生都没有选择的概率;
(Ⅲ)设随机变量ξ为甲、乙、丙这三个学生选修数学史这门课的人数,求ξ的分布列与数学期望.
查看答案
manfen5.com 满分网直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC为等边三角形,且AA1=AD=DC=2.
(1)求AC1与BC所成角的余弦值;
(2)求二面角B-AC1-C的大小;
(3)设M是BD上的点,当DM为何值时,D1M⊥平面A1C1D?并证明你的结论.
查看答案
在数列{an}中,a1=2,an+1=3an-2n+1.
(Ⅰ)证明:数列{an-n}是等比数列;
(Ⅱ)求数列{an}的通项公式an
(Ⅲ)求数列{an}的前n项和Sn
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.