满分5 > 高中数学试题 >

f(x)=x|x-a|在[3,+∞)上递增,则a∈ .

f(x)=x|x-a|在[3,+∞)上递增,则a∈   
本题考查的知识点是分段函数的单调性,注意到函数的解析式中含有参数,而且含有绝对值符号,故我们可以采用零点分段法进行处理,即分x-a≥0和x-a≤0两种情况进行讨论. 【解析】 当x-a≥0时,f(x)=x(x-a) f(x)=x(x-a)图象开口向上,对称轴为 函数在[,+∞)上递增 若f(x)=x|x-a|在[3,+∞)上递增,则a满足 即a≤3时,f(x)=x|x-a|在[3,+∞)上递增 当x-a≤0时 f(x)=x(a-x) 图象开口向下,无法保证f(x)在[3,+∞)上递增 故答案为:(-∞,3]
复制答案
考点分析:
相关试题推荐
已知无穷数列{an}中,a1,a2,…,am是以10为首项,以-2为公差的等差数列;am+1,am+2,…,a2m是以manfen5.com 满分网为首项,以manfen5.com 满分网为公比的等比数列(m≥3,m∈N*);并且对一切正整数n,都有an+2m=an成立.若a23=-2,则m=    查看答案
若平面区域manfen5.com 满分网是一个三角形,则k的取值范围是    查看答案
方程xlg(x+2)=1有    个不同的实数根. 查看答案
向量a=(cos10°,sin10°),b=(cos70°,sin70°),|a-2b|=    查看答案
阅读如图所示的程序框,若输入的n是100,则输出的变量S的值是   
manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.