满分5 > 高中数学试题 >

四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠...

四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,manfen5.com 满分网manfen5.com 满分网
(Ⅰ)证明:SA⊥BC;
(Ⅱ)求直线SD与平面SBC所成角的大小.
manfen5.com 满分网
解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC. (Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为. 解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O-xyz,通过证明,推出SA⊥BC. (Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为. 解法一: (1)作SO⊥BC,垂足为O,连接AO, 由侧面SBC⊥底面ABCD,得SO⊥底面ABCD. 因为SA=SB,所以AO=BO, 又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO, 由三垂线定理,得SA⊥BC. (Ⅱ)由(Ⅰ)知SA⊥BC, 依题设AD∥BC, 故SA⊥AD,由,,. 又,作DE⊥BC,垂足为E, 则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角. 所以,直线SD与平面SBC所成的角为. 解法二: (Ⅰ)作SO⊥BC,垂足为O,连接AO, 由侧面SBC⊥底面ABCD,得SO⊥平面ABCD. 因为SA=SB,所以AO=BO. 又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB. 如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O-xyz, 因为,, 又,所以,,.S(0,0,1),,,,所以SA⊥BC. (Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,, 所以,直线SD与平面SBC所成的角为.
复制答案
考点分析:
相关试题推荐
设命题p:方程manfen5.com 满分网+manfen5.com 满分网=1表示焦点在y轴上的双曲线,
命题q:函数f(x)=x3-kx2+1在(0,2)内单调递减,如果p∧q为真命题,求k的取值范围.
查看答案
已知a,b∈R+,a+b=1,求证:manfen5.com 满分网+manfen5.com 满分网manfen5.com 满分网
查看答案
过原点作曲线y=ex的切线,则切点的坐标为     ,切线的斜率为     查看答案
已知f(x)=sin(cosx),求f′(manfen5.com 满分网)=    查看答案
抛物线y=ax2的准线方程是y=manfen5.com 满分网,则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.