满分5 > 高中数学试题 >

从抛物线y2=4x上一点P引其准线的垂线,垂足为M,设抛物线的焦点为F,且|PF...

从抛物线y2=4x上一点P引其准线的垂线,垂足为M,设抛物线的焦点为F,且|PF|=5,则△MPF的面积为( )
A.5manfen5.com 满分网
B.manfen5.com 满分网
C.20
D.10
设出P的坐标,利用抛物线的定义可知|PF|=|PM|进而可求得y,最后利用三角性的面积公式求得答案. 【解析】 由题意,设P(,y),则|PF|=|PM|=+1=5,所以y=±4, ∴S△MPF=|PM||y|=10. 故选D
复制答案
考点分析:
相关试题推荐
抛物线y2=4x,经过点P(3,m),则点P到抛物线焦点的距离等于( )
A.manfen5.com 满分网
B.4
C.manfen5.com 满分网
D.3
查看答案
下列双曲线中,以y=±manfen5.com 满分网x为渐近线的是( )
A.manfen5.com 满分网-manfen5.com 满分网=1
B.manfen5.com 满分网-manfen5.com 满分网=1
C.manfen5.com 满分网-y2=1
D.x2-manfen5.com 满分网=1
查看答案
双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=( )
A.manfen5.com 满分网
B.-4
C.4
D.manfen5.com 满分网
查看答案
已知函数f(x)=ax3+bx2-c(其中a,b,c均为常数,x∈R).当x=1时,函数f(x)的极植为-3-c.
(1)试确定a,b的值;
(2)求f(x)的单调区间;
(3)若对于任意x>0,不等式f(x)≥-2c2恒成立,求c的取值范围.
查看答案
与向量、圆交汇.例5:已知F1、F2分别为椭圆C1manfen5.com 满分网的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且manfen5.com 满分网
(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:manfen5.com 满分网manfen5.com 满分网,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.