满分5 > 高中数学试题 >

已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0). (Ⅰ)若...

已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(Ⅰ)若l1与圆相切,求l1的方程;
(Ⅱ)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,求证:AM•AN为定值.
(I)由直线l1与圆相切,则圆心到直线的距离等于半径,求得直线方程,注意分类讨论; (II)分别联立相应方程,求得M,N的坐标,再求AM•AN. 【解析】 (Ⅰ)①若直线l1的斜率不存在,即直线x=1,符合题意.(2分) ②若直线l1斜率存在,设直线l1为y=k(x-1),即kx-y-k=0. 由题意知,圆心(3,4)到已知直线l1的距离等于半径2, 即解之得. 所求直线方程是x=1,3x-4y-3=0.(5分) (Ⅱ)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx-y-k=0 由得又直线CM与l1垂直, 得. ∴AM*AN=为定值.(10分)
复制答案
考点分析:
相关试题推荐
我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.
某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:
①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a元;
②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;
③每户每月的定额损耗费a不超过5元.
(1)求每户每月水费y(元)与月用水量x(立方米)的函数关系;
(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:
月份用水量(立方米)水费(元)
417
523
2.511
试分析该家庭今年一、二、三各月份的用水量是否超过最低限量,并求m,n,a的值.
查看答案
如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠BAC=manfen5.com 满分网
(1)求证:BC⊥AC1
(2)若D是AB的中点,求证:AC1∥平面CDB1

manfen5.com 满分网 查看答案
设函数manfen5.com 满分网,其中向量manfen5.com 满分网=(m,cos2x),manfen5.com 满分网=(1+sin2x,1),x∈R,且y=f(x)的图象经过点manfen5.com 满分网
(1)求实数m的值;
(2)求f(x)的最小正周期.
查看答案
manfen5.com 满分网如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图:观察图形,回答下列问题:
(1)[79.5,89.5)这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛的及格率(60分及以上为及格).
查看答案
等差数列{an}中,a3=1,a11=9,
(1)求a7的值
(2)求该等差数列的通项公式an
(3)若该等差数列的前n项和Sn=54,求n的值
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.