满分5 > 高中数学试题 >

设函数f(x)=lnx-px+1,其中p为常数. (Ⅰ)求函数f(x)的极值点;...

设函数f(x)=lnx-px+1,其中p为常数.
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)当p>0时,若对任意的x>0,恒有在f(x)≤0,求p的取值范围;
(Ⅲ)求证:manfen5.com 满分网
(1)先求定义域,在函数定义域内连续可导,讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值点. (2)要使f(x)≤0恒成立,只需求函数的最大值,而该函数的最大值就是极大值即可. (3)先令p=1,由(2)知,lnx-x+1≤0,从而有lnn2≤n2-1,再进行求和,利用放缩法,然后用立项求和的方法进行求和即可得证. 【解析】 (Ⅰ)∵f(x)=lnx-px+1定义域为(0,+∞), ∴, 当p≤0时,f′(x)>0,f(x)在(0,+∞)上无极值点 当p>0时,令f'(x)=0,∴x=∈(0,+∞),f'(x)、f(x)随x的变化情况如下表: 从上表可以看出:当p>0时,f(x)有唯一的极大值点 (Ⅱ)当p>0时,在处取得极大值,此极大值也是最大值, 要使f(x)≤0恒成立,只需, ∴p≥1 ∴p的取值范围为[1,+∞) (Ⅲ)令p=1,由(Ⅱ)知,lnx-x+1≤0, ∴lnx≤x-1, ∵n∈N,n≥2 ∴lnn2≤n2-1, ∴ ∴== = ∴结论成立
复制答案
考点分析:
相关试题推荐
如图:已知椭圆A,B,C是长轴长为4的椭圆上三点,点A是长轴的一个端点,BC过椭圆的中心O,且manfen5.com 满分网
(Ⅰ)求椭圆的标准方程;
(Ⅱ)如果椭圆上两点P,Q使得直线CP,CQ与x轴围成底边在x轴上的等腰三角形,是否总存在实数λ使manfen5.com 满分网?请给出证明.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网的反函数为f-1(x),数列{an}满足:a1=1,an+1=f-1(an)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:manfen5.com 满分网成等比数列,数列{bn}的前n项和为Sn,求Sn
查看答案
如图,四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,PO⊥AD,O为BC的中点.
(Ⅰ)求证:PO⊥底面ABCD;
(Ⅱ)求二面角P-AD-B的大小.
(Ⅲ)求直线PB与平面PAD所成的线面角的大小.

manfen5.com 满分网 查看答案
已知函数f(x)=ax2+bx+1(a,b∈R).
(Ⅰ)若f(-1)=0且对任意实数x均有f(x)≥0成立,求实数a,b的值;
(Ⅱ)在(Ⅰ)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.
查看答案
在△ABC中,角A,B,C所对的边分别是a,b,c,manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若b=2,求△ABC面积的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.