设函数f(x)=(1+x)
2-2ln(1+x).
(1)求f(x)的单调区间;
(2)若当
时,(其中e=2.718…)不等式f(x)<m恒成立,
求实数m的取值范围;
(3)试讨论关于x的方程:f(x)=x
2+x+a在区间[0,2]上的根的个数.
考点分析:
相关试题推荐
如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且
,
.
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案
一艘轮船在航行中每小时的燃料费和它的速度的立方成正比.已知速度为每小时10公里时,燃料费是每小时5元,而其它和速度无关的费用是每小时80元.
(1)将1小时的燃料费P元表示为速度v(公里/小时)的函数;
(2)已知甲,乙两地相距100公里,问该轮船以多大的速度行驶时,从甲地行驶到乙地所需的费用总和为最小?
查看答案
已知抛物线C
1的顶点在坐标原点,它的准线经过双曲线C
2:
的一个焦点F
1且垂直于C
2的两个焦点所在的轴,若抛物线C
1与双曲线C
2的一个交点是
.
(1)求抛物线C
1的方程及其焦点F的坐标;
(2)求双曲线C
2的方程.
查看答案
某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6则中一等奖,等于5中二等奖,等于4或3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.
查看答案
已知命题p:(x+1)(x-5)≤0,命题q:1-m≤x≤1+m(m>0).
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围.
查看答案