满分5 > 高中数学试题 >

平面向量与的夹角为60°,=(2,0),||=1,则|+2|=( ) A. B....

平面向量manfen5.com 满分网manfen5.com 满分网的夹角为60°,manfen5.com 满分网=(2,0),|manfen5.com 满分网|=1,则|manfen5.com 满分网+2manfen5.com 满分网|=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.4
D.12
根据向量的坐标求出向量的模,最后结论要求模,一般要把模平方,知道夹角就可以解决平方过程中的数量积问题,题目最后不要忘记开方. 【解析】 由已知|a|=2, |a+2b|2=a2+4a•b+4b2=4+4×2×1×cos60°+4=12 ∴|a+2b|=, 故选B
复制答案
考点分析:
相关试题推荐
设函数f(x)=(1+x)2-2ln(1+x).
(1)求f(x)的单调区间;
(2)若当manfen5.com 满分网时,(其中e=2.718…)不等式f(x)<m恒成立,
求实数m的取值范围;
(3)试讨论关于x的方程:f(x)=x2+x+a在区间[0,2]上的根的个数.
查看答案
manfen5.com 满分网如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且manfen5.com 满分网manfen5.com 满分网
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案
一艘轮船在航行中每小时的燃料费和它的速度的立方成正比.已知速度为每小时10公里时,燃料费是每小时5元,而其它和速度无关的费用是每小时80元.
(1)将1小时的燃料费P元表示为速度v(公里/小时)的函数;
(2)已知甲,乙两地相距100公里,问该轮船以多大的速度行驶时,从甲地行驶到乙地所需的费用总和为最小?
查看答案
已知抛物线C1的顶点在坐标原点,它的准线经过双曲线C2manfen5.com 满分网的一个焦点F1且垂直于C2的两个焦点所在的轴,若抛物线C1与双曲线C2的一个交点是manfen5.com 满分网
(1)求抛物线C1的方程及其焦点F的坐标;
(2)求双曲线C2的方程.
查看答案
某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6则中一等奖,等于5中二等奖,等于4或3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.