满分5 > 高中数学试题 >

设有关于x的一元二次方程x2-2ax+b2=0. (1)若a是从0、1、2、3四...

设有关于x的一元二次方程x2-2ax+b2=0.
(1)若a是从0、1、2、3四个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率.
(2)若a是从区间[0,3]内任取的一个数,b=2,求上述方程没有实根的概率.
(1)由题意知本题是一个古典概型,根据题意先做出方程没有实根的充要条件,列举出试验发生的所有事件,看出符合条件的事件,根据古典概型公式得到结果. (2)由题意知本题是一个几何概型,根据前面做出的方程没有实根的充要条件,写出试验发生的所有事件包含的元素,和符合条件的元素的集合,根据几何概型公式得到结果. 【解析】 由题意知本题是一个古典概型, 设事件A为“方程x2-2ax+b2=0无实根” 当a>0,b>0时,方程x2-2ax+b2=0无实根的充要条件为 △=4a2-4b2=4(a2-b2)<0,即a<b (1)基本事件共12个:(0,0)(0,1),(0,2),(1,0)(1,1),(1,2),(2,0),(2,1), (2,2),(3,0),(3,1),(3,2). 其中第一个数表示a的取值,第二个数表示b的取值. 事件A包含3个基本事件(0,1),(0,2)(1,2), ∴事件A发生的概率为P(A)==. (2)由题意知本题是一个几何概型, 试验的所有基本事件所构成的区域为:{(a,b)|0≤a≤3,b=2}, 其中构成事件B的区域为{(a,b)|0≤a≤3,b=2,a<b} ∴所求概率为P(B)=.
复制答案
考点分析:
相关试题推荐
设函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<manfen5.com 满分网)的最高点D的坐标为(manfen5.com 满分网),由最高点D运动到相邻最低点时,函数图形与x的交点的坐标为(manfen5.com 满分网);
(1)求函数f(x)的解析式.
(2)当manfen5.com 满分网时,求函数f(x)的最大值和最小值以及分别取得最大值和最小值时相应的自变量x的值.
(3)将函数y=f(x)的图象向右平移manfen5.com 满分网个单位,得到函数y=g(x)的图象,求函数y=g(x)的单调减区间.
查看答案
已知:角α终边上一点manfen5.com 满分网,且manfen5.com 满分网,求cosα,tanα.
查看答案
某城市理论预测2001年到2005年人口总数与年份的关系如下表所示
manfen5.com 满分网
(1)请画出上表数据的散点图;
(2)求人口总数y关于年份x的线性回归方程;
(3)试估计到20011年人口总数.
查看答案
已知函数y=2-sin2x+cosx,求函数的值域.并指出函数取得最大值时相应的x的值.
查看答案
已知tanα=2,sinα+cosα<0求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.