满分5 > 高中数学试题 >

已知数列{an},其前n项和Sn满足Sn+1=2λSn+1(λ是大于0的常数),...

已知数列{an},其前n项和Sn满足Sn+1=2λSn+1(λ是大于0的常数),且a1=1,a3=4.
(1)求λ的值;
(2)求数列{an}的通项公式an
(3)设数列{nan}的前n项和为Tn,求Tn
(1)由Sn+1=2λSn+1知S2=2λS1+1=2λa1+1=2λ+1,S3=2λS2+1=4λ2+2λ+1,由此可求出λ=1. (2)由题意可知Sn+1=2•2n-1,∴Sn=2n-1,由此可知an=2n-1. (3)由题意知Tn=1•2+2•21+3•22++(n-1)•2n-2+n•2n-1,2Tn=1•2+2•22++(n-2)•2n-2+(n-1)•2n-1+n•2n,由此可知Tn的值. 【解析】 (1)由Sn+1=2λSn+1得S2=2λS1+1=2λa1+1=2λ+1,S3=2λS2+1=4λ2+2λ+1,∴a3=S3-S2=4λ2,∵a3=4,λ>0,∴λ=1.(5分) (2)由Sn+1=2Sn+1整理得Sn+1+1=2(Sn+1), ∴数列{Sn+1}是以S1+1=2为首项,以2为公比的等比数列, ∴Sn+1=2•2n-1,∴Sn=2n-1, ∴an=Sn-Sn-1=2n-1(n≥2), ∵当n=1时a1=1满足an=2n-1,∴an=2n-1.(10分) (3)Tn=1•2+2•21+3•22++(n-1)•2n-2+n•2n-1,①2Tn=1•2+2•22++(n-2)•2n-2+(n-1)•2n-1+n•2n,② ①-②得-Tn=1+2+22++2n-2+2n-1-n•2n, 则Tn=n•2n-2n+1.(14分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,P为BC边的中点,SB与平面ABCD所成的角为45°,且AD=2,SA=1.
(Ⅰ)求证:PD⊥平面SAP;
(Ⅱ)求二面角A-SD-P的余弦的大小.
查看答案
一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分.
(Ⅰ)若从袋子里一次随机取出3个球,求得4分的概率;
(Ⅱ)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分ξ的概率分布列及数学期望.
查看答案
如图所示,已知α的终边所在直线上的一点P的坐标为(-3,4),β的终边在第一象限且与单位圆的交点Q的纵坐标为manfen5.com 满分网
(Ⅰ)求sinα、cosβ;
(Ⅱ)若manfen5.com 满分网,求α+β.

manfen5.com 满分网 查看答案
阅读以下命题:
①如果a,b是两条直线,且a∥b,那么a平行于经过b的所有平面;
②如果直线a和平面a满足a∥a,那么a与a内的任意直线平行;
③如果直线a,b和平面a满足a∥a,b∥a,那么a∥b;
④如果直线a,b和平面a满足a∥b,a∥a,b∉a,,那么b∥a;
⑤如果平面α⊥平面x,平面β⊥平面x,α∩β=l,那么l⊥平面x.
请将所有正确命题的编号写在横线上    查看答案
已知动点p(x,y)在椭圆manfen5.com 满分网manfen5.com 满分网=1上,若A点坐标为(3,0)manfen5.com 满分网=1且manfen5.com 满分网manfen5.com 满分网=0,则|manfen5.com 满分网|的最小值是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.