(1)先由an+1=2Sn+1求出an+1=3an.再利用数列{an}为等比数列,可得a2=3a1.就可以求出t值.
(2)先利用T3=15求出b2=5,,再利用公差把b1和b3表示出来.代入a1+b1,a2+b2,a3+b3成等比数列,求出公差即可求Tn.
【解析】
(1)由an+1=2Sn+1 ①可得an=2sn-1+1 (n≥2)②
两式作差得 an+1-an=2an⇒an+1=3an.
因为数列{an}为等比数列⇒a2=2s1+1=2a1+1=3a1⇒a1=t=1.
所以数列{an}是首项为1,公比为3的等比数列
∴an=3n-1.
(2)设等差数列{bn}的公差为d,
由T3=15⇒b1+b2+b3=15⇒b2=5,
所以可设b1=5-d,b3=5+d.
又a1=1,a2=3,a3=9.
由题得(5-d+1)(5+d+9)=(5+3)2.⇒d=-10,d=2.
因为等差数列{bn}的前n项和Tn有最大值,且b2=5,所以d=-10.
解得b1=15,
所以Tn=15n+=20n-5n2.