登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
设f(x)=为奇函数,a为常数, (Ⅰ)求a的值; (Ⅱ)证明:f(x)在(1,...
设f(x)=
为奇函数,a为常数,
(Ⅰ)求a的值;
(Ⅱ)证明:f(x)在(1,+∞)内单调递增;
(Ⅲ)若对于[3,4]上的每一个x的值,不等式f(x)>
+m恒成立,求实数m的取值范围.
(1)利用奇函数的定义找关系求解出字母的值,注意对多解的取舍. (2)利用单调性的定义证明函数在给定区间上的单调性,关键要在自变量大小的前提下推导出函数值的大小. (3)将恒成立问题转化为函数的最值问题,用到了分离变量的思想. 【解析】 (1)∵f(x)是奇函数,∴f(-x)=-f(x). ∴. 检验a=1(舍),∴a=-1. (2)由(1)知 证明:任取1<x2<x1,∴x1-1>x2-1>0 ∴ 即f(x1)>f(x2). ∴f(x)在(1,+∞)内单调递增. (3)对[3,4]于上的每一个x的值,不等式恒成立,即恒成立. 令.只需g(x)min>m, 又易知在[3,4]上是增函数, ∴. ∴时原式恒成立.
复制答案
考点分析:
相关试题推荐
某加工厂需要定期购买原材料,已知每公斤材料的价格为1.5元,每次购买原材料需支付运费600元、
每公斤原材料每天的保管费用为0.03元,该厂每天需要消耗原材料400公斤,每次购买的原材料当天即开始使用(即有400公斤不需要保管).
(1)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y
1
关于x的函数关系式;
(2)求该厂多少天购买一次原材料才能使平均每天支付的总费用y最少,并求出这个最少(小)值.
查看答案
若函数f(x)=ax
2
-x-1有且仅有一个零点,求实数a的值;
查看答案
已知函数f(x)是定义在[-1,1]上的奇函数,并且在[-1,1]上f(x)是增函数,求满足条件f(1-a)+f(1-a
2
)≤0的a的取值范围.
查看答案
化简下列各式:
(Ⅰ)
;
(Ⅱ)
.
查看答案
已知集合A={x|x
2
-x-12<0},集合B={x|x
2
+2x-8>0},求A∩B,A∪B.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.