满分5 > 高中数学试题 >

已知二次函数f(x)=x2+bx+c(b、c∈R),不论α、β为何实数,恒有f(...

已知二次函数f(x)=x2+bx+c(b、c∈R),不论α、β为何实数,恒有f(sinα)≥0,f(2+cosβ)≤0.
(1)求证:b+c=-1;
(2)求证:c≥3;
(3)若函数f(sinα)的最大值为8,求b、c的值.
本题考查的是不等式的综合应用问题.在解答时: (1)充分利用条件不论α、β为何实数,恒有f(sinα)≥0,f(2+cosβ)≤0.注意分析sinα、2+cosβ的范围,利用夹逼的办法即可获得问题的解答; (2)首先利用(1)的结论对问题进行化简化为只有参数c的函数,再结合条件不论β为何实数,恒有f(2+cosβ)≤0,即可获得问题的解答; (3)首先对函数进行化简配方,然后利用二次函数的性质结合自变量和对称轴的范围即可获得问题的解答. 【解析】 (1)证明:∵|sinα|≤1且f(sinα)≥0恒成立,可得f(1)≥0. 又∵1≤2+cosβ≤3且f(2+cosβ)≤0恒成立,可得f(1)≤0, ∴f(1)=0, ∴1+b+c=0,∴b+c=-1. (2)证明:∵b+c=-1,∴b=-1-c, ∴f(x)=x2-(1+c)x+c=(x-1)(x-c). 又∵1≤2+cosβ≤3且f(2+cosβ)≤0恒成立 ∴x-c≤0,即c≥x恒成立. ∴c≥3. (3)∵f(sinα)=sin2α-(1+c)sinα+c=(sinα-)2+c-()2, ∵ ∴当sinα=-1时,f(sinα)的最大值为1-b+c. 由1-b+c=8与b+c=-1联立, 可得b=-4,c=3. 即b=-4,c=3.
复制答案
考点分析:
相关试题推荐
已知⊙O的直径为10,AB是⊙O的一条直径,长为20的线段MN的中点P在⊙O上运动(异于A、B两点).
(Ⅰ)求证:manfen5.com 满分网manfen5.com 满分网与点P在⊙O上的位置无关;
(Ⅱ)当manfen5.com 满分网manfen5.com 满分网的夹角θ取何值时,manfen5.com 满分网manfen5.com 满分网有最大值.
查看答案
平面上有四点A、B、Q、P,其中A、B为定点,且|AB|=manfen5.com 满分网,P、Q为动点,满足|AP|=|PQ|=|QB|=1,△APB和△PQB的面积分别为m、n.
(1)求∠A=30°,求∠Q
(2) 求m2+n2的最大值.
查看答案
已知manfen5.com 满分网manfen5.com 满分网,其中0<α<β<π.
(1)求证:manfen5.com 满分网manfen5.com 满分网互相垂直;
(2)若manfen5.com 满分网manfen5.com 满分网的长度相等,求α-β的值(k为非零的常数).
查看答案
△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且4sin2manfen5.com 满分网-cos2A=manfen5.com 满分网
(1)求∠A;
(2)若a=7,△ABC的面积为10manfen5.com 满分网,求b+c的值.
查看答案
已知α∈(0,manfen5.com 满分网),β∈(manfen5.com 满分网,π)且sin(α+β)=manfen5.com 满分网,cosβ=-manfen5.com 满分网.求sinα.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.