满分5 > 高中数学试题 >

已知椭圆+=1(a>0,b>0),A是椭圆长轴的一个端点,B是椭圆短轴的一个端点...

已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>0,b>0),A是椭圆长轴的一个端点,B是椭圆短轴的一个端点,F为椭圆的一个焦点.若AB⊥BF,则该椭圆的离心率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
先AB于BF垂直判断出两直线的斜率乘积为-1,进而求得b于a,c的关系,利用a2-c2=b2进而替换消去b,进而求得a和c的关系式,则椭圆的离心率可求. 【解析】 ∵AB⊥BF, ∴kAB•kBF=-1,即•(-)=-1,即b2=ac, ∴a2-c2=ac,两边同除以a2,得e2+e-1=0, ∴e=(舍负), 故选B.
复制答案
考点分析:
相关试题推荐
如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,manfen5.com 满分网),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则( )
manfen5.com 满分网
A.随着角度θ的增大,e1增大,e1e2为定值
B.随着角度θ的增大,e1减小,e1e2为定值
C.随着角度θ的增大,e1增大,e1e2也增大
D.随着角度θ的增大,e1减小,e1e2也减小
查看答案
已知抛物线y2=2px(p>0)与双曲线manfen5.com 满分网(a,b>0)有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,若l为双曲线的一条斜率大于0的渐近线,则l的斜率可以在下列给出的某个区间内,该区间可以是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知数列{an}满足:a1=1,an+1=2an+n+1,n∈N*
(Ⅰ)若数列{an+pn+q}是等比数列,求实数p、q的值;
(Ⅱ)若数列{an}的前n项和为Sn,求an和Sn
(Ⅲ)试比较an与(n+2)2的大小.
查看答案
设动点M的坐标为(x,y)(x、y∈R),向量manfen5.com 满分网=(x-2,y),manfen5.com 满分网=(x+2,y),且|a|+|b|=8,
(I)求动点M(x,y)的轨迹C的方程;
(Ⅱ)过点N(0,2)作直线l与曲线C交于A、B两点,若manfen5.com 满分网(O为坐标原点),是否存在直线l,使得四边形OAPB为矩形,若存在,求出直线l的方程,若不存在,请说明理由.
查看答案
设函数manfen5.com 满分网
(I)求f′(x)的表达式;
(Ⅱ)求函数f(x)的单调区间、极大值和极小值;
(Ⅲ)若x∈[a+1,a+2]时,恒有f′(x)>-3a,求实数a的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.