满分5 > 高中数学试题 >

已知椭圆的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其...

已知椭圆manfen5.com 满分网的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).
(1)当m+n>0时,求椭圆离心率的范围;
(2)直线AB与⊙P能否相切?证明你的结论.
(1)先求F、B、C的坐标,求直线FC、BC的中垂线方程,解出P的坐标,m+n>0,得到a、b、c关系,求出e的范围. (2)直线AB与⊙P能相切,则切点为B,求出AB和PB的斜率,如果垂直,斜率之积为-1,判断即可. 【解析】 (1)设F、B、C的坐标分别为(-c,0),(0,b),(1,0),则FC、BC的中垂线分别为 x=, y-.联列方程组, 解出 ∴, 即b-bc+b2-c>0,即(1+b)(b-c)>0, ∴b>c. 从而b2>c2即有a2>2c2, ∴.又 e>0, ∴. (2)直线AB与⊙P不能相切.由kAB=b,. 如果直线AB与⊙P相切,则  b•=-1. 解出c=0或2,与0<c<1矛盾, 所以直线AB与⊙P不能相切.
复制答案
考点分析:
相关试题推荐
已知点P是圆C:x2+y2=1外一点,设k1,k2分别是过点P的圆C两条切线的斜率.
(1)若点P坐标为(2,2),求k1•k2的值;
(2)若k1•k2=-λ(λ≠-1,0),求点P的轨迹M的方程,并指出曲线M所在圆锥曲线的类型.
查看答案
manfen5.com 满分网设椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆C与x轴正半轴于点P、Q,且manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网
(1)求椭圆C的离心率;
(2)若过A、Q、F三点的圆恰好与直线l:x+manfen5.com 满分网y+3=0相切,求椭圆C的方程.
查看答案
manfen5.com 满分网已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:manfen5.com 满分网有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求manfen5.com 满分网的取值范围.
查看答案
抛物线y2=4x的焦点为F,A(x1,y1),B(x2,y2)(x1>x2,y1>0,y2<0)在抛物线上,且存在实数λ,使manfen5.com 满分网=0,manfen5.com 满分网
(1)求直线AB的方程;
(2)求△AOB的外接圆的方程.
查看答案
已知抛物线x2=2py(p为常数,p≠0)上不同两点A、B的横坐标恰好是关于x的方程x2+6x+4q=0(q为常数)的两个根,则直线AB的方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.