满分5 > 高中数学试题 >

设函数f(x)=, (1)求函数f(x)的单调区间; (2)若k>0,求不等式f...

设函数f(x)=manfen5.com 满分网
(1)求函数f(x)的单调区间;
(2)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集.
(1)对函数f(x)进行求导,当导数大于0时是单调递增区间,当导数小于0时是原函数的单调递减区间. (2)将f'(x)代入不等式即可求解. 【解析】 (1)∵f(x)= ∴ 由f'(x)=0,得x=1, 因为当x<0时,f'(x)<0; 当0<x<1时,f'(x)<0;当x>1时,f'(x)>0; 所以f(x)的单调增区间是:[1,+∝);单调减区间是:(-∞,0),(0,1] (2)由f'(x)+k(1-x)f(x)==>0, 得:(x-1)(kx-1)<0, 故:当0<k<1时,解集是:{x|1<x<}; 当k=1时,解集是:φ; 当k>1时,解集是:{x|<x<1}.
复制答案
考点分析:
相关试题推荐
某种产品每件成本为6元,每件售价为x元(x>6),年销量为u万件,若已知manfen5.com 满分网manfen5.com 满分网成正比,且售价为10元时,年销量为28万件.
(1)求年销售利润y关于x的函数关系式.
(2)求售价为多少时,年利润最大,并求出最大年利润.
查看答案
如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D,E分别在棱PB,PC上,且DE∥BC,
(Ⅰ)求证:BC⊥平面PAC;
(Ⅱ)当D为PB的中点时,求AD与平面PAC所成的角的余弦值.

manfen5.com 满分网 查看答案
从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.
(1)求ξ的分布列和ξ的数学期望;
(2)求“所选3人中女生人数ξ≤1”的概率.
查看答案
在△ABC中,manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求sinC的值;
(Ⅱ)设BC=5,求△ABC的面积.
查看答案
阅读以下命题:
①如果a,b是两条直线,且a∥b,那么a平行于经过b的所有平面;
②如果直线a和平面a满足a∥a,那么a与a内的任意直线平行;
③如果直线a,b和平面a满足a∥a,b∥a,那么a∥b;
④如果直线a,b和平面a满足a∥b,a∥a,b∉a,,那么b∥a;
⑤如果平面α⊥平面x,平面β⊥平面x,α∩β=l,那么l⊥平面x.
请将所有正确命题的编号写在横线上    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.