满分5 >
高中数学试题 >
若N={x|x2≤1},M={x|x2-2x-3<0},则M∩N=( ) A.{...
若N={x|x2≤1},M={x|x2-2x-3<0},则M∩N=( )
A.{x|-1≤x≤1}
B.{x|-1≤x<1}
C.{x|-1<x<1}
D.{x|-1<x≤1}
考点分析:
相关试题推荐
已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且
.
(1)求动点P的轨迹C的方程;
(2)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,设|DA|=l
1,|DB|=l
2,求
的最大值.
查看答案
设函数f(x)=
,
(1)求函数f(x)的单调区间;
(2)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集.
查看答案
某种产品每件成本为6元,每件售价为x元(x>6),年销量为u万件,若已知
与
成正比,且售价为10元时,年销量为28万件.
(1)求年销售利润y关于x的函数关系式.
(2)求售价为多少时,年利润最大,并求出最大年利润.
查看答案
如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D,E分别在棱PB,PC上,且DE∥BC,
(Ⅰ)求证:BC⊥平面PAC;
(Ⅱ)当D为PB的中点时,求AD与平面PAC所成的角的余弦值.
查看答案
从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.
(1)求ξ的分布列和ξ的数学期望;
(2)求“所选3人中女生人数ξ≤1”的概率.
查看答案