设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b组成数对(a,b),并构成函数f(x)=ax
2-4bx+1
(Ⅰ)写出所有可能的数对(a,b),并计算a≥2,且b≤3的概率;
(Ⅱ)求函数f(x)在区间[1,+∞)上是增函数的概率.
考点分析:
相关试题推荐
已知{a
n}是公差不为零的等差数列,a
1=1,且a
1,a
3,a
9成等比数列.
(Ⅰ)求数列{a
n}的通项;
(Ⅱ)求数列{2
an}的前n项和S
n.
查看答案
设函数f(x)=cos(2x+
)+sin
2x.
(1)求函数f(x)的最大值和最小正周期.
(2)设A,B,C为△ABC的三个内角,若cosB=
,f(
)=-
,且C为非钝角,求sinA.
查看答案
定义在R上的偶函数f(x),满足以f(x+2)=-f(x)且在[0,2]上是减函数,若方程f(x)=m(m>0)在区间[-2,6]上有四个不同的根x
1,x
2,x
3,x
4,则x
1+x
2+x
3+x
4=
.
查看答案
如图,平面内有三个向量
、
、
,其中与
与
的夹角为120°,
与
的夹角为30°,且|
|=|
|=1,|
|=
,若
=λ
+μ
(λ,μ∈R),则λ+μ的值为
.
查看答案
把函数y=cosx-
sinx的图象沿向量
=(-m,0)(其中m>0)的方向平移后,所得的图象关于y轴对称,则m的最小值是
.
查看答案