满分5 > 高中数学试题 >

已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值. (1)求实数a的...

已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.
(1)求实数a的值;
(2)若关于x的方程manfen5.com 满分网在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(3)证明:对任意的正整数n,不等式manfen5.com 满分网都成立.
(1)求出f′(x),因为函数在x=0处取极值,所以f'(0)=0求出a即可; (2)把a=1代入求得f(x)的解析式,把f(x)代入方程中得.然后令,求出导函数,讨论导函数的增减性,得到b的取值范围; (3)求出f′(x)=0时x的值,讨论函数的增减性得到函数的最大值为f(0),故ln(x+1)-x2-x≤0,然后取x=>0,代入得到结论成立. 解(1),∵x=0时,f(x)取得极值, ∴f'(0)=0, 故,解得a=1.经检验a=1符合题意. (2)由a=1知,得. 令, 则在[0,2]上恰有两个不同的实数根, 等价于φ(x)=0在[0,2]上恰有两个不同实数根., 当x∈(0,1)时,φ'(x)>0,于是φ(x)在[0,1]上单调递增; 当x∈(1,2)时,φ'(x)<0,于是φ(x)在[1,2]上单调递减; 依题意有,∴ (3)f(x)=ln(x+1)-x2-x的定义域为{x|x>-1}. 由(1)知时,(舍去), ∴当-1<x<0时,f'(x)>0,f(x)单调递增; 当x>0时,f'(x)<0,f(x)单调递减. ∴f(0)为f(x)在(-1,+∞)上的最大值. ∴f(x)≤f(0), 故ln(x+1)-x2-x≤0(当且仅当x=0时,等号成立). 对任意正整数n,取得,.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为manfen5.com 满分网的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
查看答案
如图,已知△ABD是等腰直角三角形,∠D=90°,BD=manfen5.com 满分网.现将△ABD沿斜边的中线DC折起,使二面角A-DC-B为直二面角,E是线段AD的中点,F是线段AC上的一个动点(不包括A).
(1)确定F的位置,使得平面ABD⊥平面BEF;
(2)当直线BD与直线EF所成的角为60°时,求证:平面ABD⊥平面BEF.
manfen5.com 满分网
查看答案
某高校最近出台一项英语等级考试规定;每位考试者两年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取证书,不再参加以后的考试,否则就一直考到第4次为止.如果小明决定参加等级考试,设他每次参加考试通过的概率依次为0.5,0.6,0.7,0.9,
(1)求小明在两年内领到证书的概率;
(2)求在两年内小明参加英语等级考试次数ξ的分布列和ξ的期望.
查看答案
已知向量manfen5.com 满分网=manfen5.com 满分网,向量manfen5.com 满分网与向量manfen5.com 满分网关于x轴对称.
(1)求函数manfen5.com 满分网的解析式,并求其单调增区间;
(2)若集合M={f(x)|f(x)+f(x+2)=f(x+1),x∈R},试判断g(x)与集合M的关系.
查看答案
manfen5.com 满分网如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题:①动点A′在平面ABC上的射影在线段AF上;②三棱锥A′-FED的体积有最大值;③恒有平面A′GF⊥平面BCED;
④异面直线A′E与BD不可能互相垂直;⑤异面直线FE与A′D所成角的取值范围是manfen5.com 满分网.其中正确命题的序号是    .(将正确命题的序号都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.