满分5 > 高中数学试题 >

如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=...

manfen5.com 满分网如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=manfen5.com 满分网,∠ABC=60°.
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的余弦值.
(1)欲证AB⊥A1C,而A1C⊂平面ACC1A1,可先证AB⊥平面ACC1A1,根据三棱柱ABC-A1B1C1为直三棱柱,可知AB⊥AA1,由正弦定理得AB⊥AC,满足线面垂直的判定定理所需条件; (2)作AD⊥A1C交A1C于D点,连接BD,由三垂线定理知BD⊥A1C,则∠ADB为二面角A-A1C-B的平面角,在Rt△BAD中,求出二面角A-A1C-B的余弦值即可. 【解析】 (1)证明:∵三棱柱ABC-A1B1C1为直三棱柱,∴AB⊥AA1,在△ABC中,AB=1,AC=,∠ABC=60°,由正弦定理得∠ACB=30°, ∴∠BAC=90°,即AB⊥AC, ∴AB⊥平面ACC1A1, 又A1C⊂平面ACC1A1, ∴AB⊥A1C. (2)如图,作AD⊥A1C交A1C于D点,连接BD, 由三垂线定理知BD⊥A1C, ∴∠ADB为二面角A-A1C-B的平面角. 在Rt△AA1C中,AD===, 在Rt△BAD中,tan∠ADB==, ∴cos∠ADB=, 即二面角A-A1C-B的余弦值为.
复制答案
考点分析:
相关试题推荐
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为manfen5.com 满分网,且各局胜负相互独立.求:
(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数ξ的分别列与期望Eξ.
查看答案
设函数f(x)=cos(2x+manfen5.com 满分网)+sin2x.
(1)求函数f(x)的最大值和最小正周期.
(2)设A,B,C为△ABC的三个内角,若cosB=manfen5.com 满分网,f(manfen5.com 满分网)=-manfen5.com 满分网,且C为非钝角,求sinA.
查看答案
一个正方体形状的铁桶ABCD-A1B1C1D1的内壁的体积为V,里面装有体积为manfen5.com 满分网V的水,放在水平地面上(如图所示),现沿棱AB将铁桶倾斜,当铁桶中的水刚好要留出时,倾斜角(平面ABB1A1与地面所成的二面角)的余弦值为    
manfen5.com 满分网 查看答案
manfen5.com 满分网如图,平面内有三个向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,其中与manfen5.com 满分网manfen5.com 满分网的夹角为120°,manfen5.com 满分网manfen5.com 满分网的夹角为30°,且|manfen5.com 满分网|=|manfen5.com 满分网|=1,|manfen5.com 满分网|=manfen5.com 满分网,若manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网(λ,μ∈R),则λ+μ的值为    查看答案
把函数y=cosx-manfen5.com 满分网sinx的图象沿向量manfen5.com 满分网=(-m,0)(其中m>0)的方向平移后,所得的图象关于y轴对称,则m的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.