满分5 > 高中数学试题 >

如图,G是△OAB的重心,P、Q分别是边OA、OB上的动点,且P、G、Q三点共线...

manfen5.com 满分网如图,G是△OAB的重心,P、Q分别是边OA、OB上的动点,且P、G、Q三点共线.
(1)设manfen5.com 满分网,将manfen5.com 满分网用λ、manfen5.com 满分网manfen5.com 满分网表示;
(2)设manfen5.com 满分网manfen5.com 满分网,证明:manfen5.com 满分网是定值;
(3)记△OAB与△OPQ的面积分别为S、T.求manfen5.com 满分网的取值范围.
(1)寻找包含的图形△OPG,利用向量的加法法则知,在根据和即可 (2)根据(1)结合,知:在根据G是△OAB的重心知:,最后根据、不共线得到关于x,y,λ的方程组即可求解 (3)根据三角形面积计算公式,知=xy,由点P、Q的定义知,, 且时,y=1;x=1时,.此时,均有.时,.此时,均有.得到的范围为在根据(2)知进行作差证明即可 【解析】 (1)= (2)一方面,由(1),得;① 另一方面,∵G是△OAB的重心, ∴.② 而、不共线,∴由①、②, 得 解之,得, ∴(定值). (3). 由点P、Q的定义知,, 且时,y=1;x=1时,. 此时,均有.时,. 此时,均有. 以下证明:. 由(2)知, ∵, ∴. ∵, ∴. ∴的取值范围.
复制答案
考点分析:
相关试题推荐
如图,已知点G是边长为1的正三角形ABC的中心,线段DE经过点G,并绕点G转动,分别交边AB、AC于点D、E;设manfen5.com 满分网manfen5.com 满分网,其中0<m≤1,0<n≤1.
(1)求表达式manfen5.com 满分网的值,并说明理由;
(2)求△ADE面积的最大和最小值,并指出相应的m、n的值.

manfen5.com 满分网 查看答案
已知△ABC的三边长分别为AB=7,BC=5,CA=6,则manfen5.com 满分网的值为     查看答案
如图,在△ABC中,AB=3,manfen5.com 满分网,AC=2,若O为△ABC的外心,则manfen5.com 满分网=-manfen5.com 满分网
manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(sinα,2)与向量manfen5.com 满分网=(cosα,1)互相平行,则tan2α的值为     查看答案
在△ABC中,AB=2,D是AC的中点,若manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.