满分5 > 高中数学试题 >

已知a是实数,函数f(x)=x2(x-a). (Ⅰ)若f′(1)=3,求a的值及...

已知a是实数,函数f(x)=x2(x-a).
(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[0,2]上的最大值.
(I)求出f'(x),利用f'(1)=3得到a的值,然后把a代入f(x)中求出f(1)得到切点,而切线的斜率等于f'(1)=3,写出切线方程即可; (II)令f'(x)=0求出x的值,利用x的值分三个区间讨论f'(x)的正负得到函数的单调区间,根据函数的增减性得到函数的最大值. 【解析】 (I)f'(x)=3x2-2ax.因为f'(1)=3-2a=3,所以a=0. 又当a=0时,f(1)=1,f'(1)=3,则切点坐标(1,1),斜率为3 所以曲线y=f(x)在(1,f(1))处的切线方程为y-1=3(x-1)化简得3x-y-2=0. (II)令f'(x)=0,解得. 当,即a≤0时,f(x)在[0,2]上单调递增,从而fmax=f(2)=8-4a. 当时,即a≥3时,f(x)在[0,2]上单调递减,从而fmax=f(0)=0. 当,即0<a<3,f(x)在上单调递减,在上单调递增,从而 综上所述,
复制答案
考点分析:
相关试题推荐
设函数,其中常数a>1,f(x)=manfen5.com 满分网x3-(1+a)x2+4ax+24a
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.
查看答案
已知函数f(x)=x3-3(a-1)x2-6ax,x∈R,当a>0时,若函数f(x)在区间[-1、2]上是减函数,求a的取值范围.
查看答案
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为manfen5.com 满分网.甲、乙、丙三位同学每人购买了一瓶该饮料.
(Ⅰ)求三位同学都没有中奖的概率;
(Ⅱ)求三位同学中至少有两位没有中奖的概率.
查看答案
manfen5.com 满分网如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=manfen5.com 满分网,∠ABC=60°.
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的余弦值.
查看答案
已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.