(I)由题设条件知当n=1时,,a1=1.当n=2时,,a2=3.
(II)由,知4Sn=(an+1)24Sn-1=(an-1+1)2,相减得:(an+an-1)(an-an-1-2)=0.由此可知an=2n-1.
(Ⅲ)T2n+1=b1+[a1+(-1)1]+(a2+31)+[a3+(-1)2]+(a4+32)++(a2n+3n)=1+S2n+(3+32++3n)+[(-1)1+(-1)2++(-1)n],由此能够求出其结果.
【解析】
(I)当n=1时,,
∴,a1=1
当n=2时,,
∴,a2=3.
(II)∵,
∴4Sn=(an+1)24Sn-1=(an-1+1)2,相减得:(an+an-1)(an-an-1-2)=0
∵{an}是正数组成的数列,
∴an-an-1=2,∴an=2n-1.
(Ⅲ)T2n+1=b1+[a1+(-1)1]+(a2+31)+[a3+(-1)2]+(a4+32)++(a2n+3n)
=1+S2n+(3+32++3n)+[(-1)1+(-1)2++(-1)n]
=1+
=.