满分5 > 高中数学试题 >

已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等...

已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}中bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn
本题是数列中的一道综合题,(1)的求解要利用恒等式an+1=2Sn+1构造出an=2Sn-1+1两者作差得出an+1=3an,此处是的难点,数列的{bn}的求解根据题意列出方程求d,即可, (II)中数列求和是一个典型的错位相减法求和技巧的运用. 【解析】 (Ⅰ)∵a1=1,an+1=2Sn+1(n∈N*), ∴an=2Sn-1+1(n∈N*,n>1), ∴an+1-an=2(Sn-Sn-1), ∴an+1-an=2an, ∴an+1=3an(n∈N*,n>1)(2分) 而a2=2a1+1=3=3a1, ∴an+1=3an(n∈N*) ∴数列{an}是以1为首项,3为公比的等比数列, ∴an=3n-1(n∈N*)(4分) ∴a1=1,a2=3,a3=9, 在等差数列{bn}中, ∵b1+b2+b3=15, ∴b2=5. 又因a1+b1、a2+b2、a3+b3成等比数列,设等差数列{bn}的公差为d, ∴(1+5-d)(9+5+d)=64(6分) 解得d=-10,或d=2, ∵bn>0(n∈N*), ∴舍去d=-10,取d=2, ∴b1=3, ∴bn=2n+1(n∈N*),(8分) (Ⅱ)由(Ⅰ)知Tn=3×1+5×3+7×32++(2n-1)3n-2+(2n+1)3n-1① 3Tn=3×3+5×32+7×33++(2n-1)3n-1+(2n+1)3n②(10分) ①-②得-2Tn=3×1+2×3+2×32+2×33++2×3n-1-(2n+1)3n(12分) =3+2(3+32+33++3n-1)-(2n+1)3n =, ∴Tn=n•3n(14分)
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网,数列{an}满足manfen5.com 满分网
(I)求数列{an}的通项公式;
(II)设Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,若Tn≥tn2对n∈N*恒成立,求实数t的取值范围;
(III)在数列{an}中是否存在这样一些项:manfen5.com 满分网,这些项能够构成以a1为首项,q(0<q<5,q∈N*)为公比的等比数列manfen5.com 满分网,k∈N*.若存在,写出nk关于k的表达式;若不存在,说明理由.
查看答案
设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有manfen5.com 满分网
(I)求a1,a2的值;
(II)求数列{an}的通项公式;
(III)令b1=1,b2k=a2k-1+(-1)k,b2k+1=a2k+3k(k=1,2,3,…),求数列{bn}的前2n+1项和T2n+1
查看答案
已知{an}是递增数列,其前n项和为Sn,a1>1,且10Sn=(2an+1)(an+2),n∈N*
(Ⅰ)求数列{an}的通项an
(Ⅱ)是否存在m,n,k∈N*,使得2(am+an)=ak成立?若存在,写出一组符合条件的m,n,k的值;若不存在,请说明理由;
(Ⅲ)设bn=an-manfen5.com 满分网,cn=manfen5.com 满分网,若对于任意的n∈N*,不等式manfen5.com 满分网-manfen5.com 满分网≤0恒成立,求正整数m的最大值.
查看答案
记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=10.
(1)求数列{an}的通项公式;
(2)令bn=an•2n(n∈N*),求数列{bn}的前n项和Tn
查看答案
已知数列{an}的前n项和为Sn,a1=1,Sn+1=4an+1,设bn=an+1-2an
(Ⅰ)证明数列{bn}是等比数列;
(Ⅱ)数列{cn}满足cn=manfen5.com 满分网(n∈N+),设Tn=c1c2+c2c3+c3c4+…+cncn+1,若对一切n∈N+不等式4mTn>(n+2)cn恒成立,求实数m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.