满分5 > 高中数学试题 >

定义在R上的奇函数f(x)有最小正周期为2,且x∈(0,1)时,. (1)求f(...

定义在R上的奇函数f(x)有最小正周期为2,且x∈(0,1)时,manfen5.com 满分网
(1)求f(x)在[-1,1]上的解析式;
(2)判断f(x)在(0,1)上的单调性;
(3)当λ为何值时,方程f(x)=λ在x∈[-1,1]上有实数解.
(1)由f(x)是x∈R上的奇函数,得f(0)=0.再由最小正周期为2,得到(1)和f(-1)的值.然后求(-1,0)上的解析式,通过在(-1,0)上取变量,转化到(0,1)上,应用其解析式求解. (2)用定义,先任取两个变量,且界定大小,再作差变形看符号. (3)根据题意,求得f(x)在[-1,1]上的值域即可. 【解析】 (1)∵f(x)是x∈R上的奇函数, ∴f(0)=0. 又∵2为最小正周期, ∴f(1)=f(1-2)=f(-1)=-f(1)=0. 设x∈(-1,0),则-x∈(0,1),, ∴, ∴ (2)设0<x1<x2<1, f(x1)-f(x2)==, ∴f(x)在(0,1)上为减函数. (3)∵f(x)在(0,1)上为减函数, ∴, 即f(x)∈(,). 同理,x在(-1,0)上时,f(x)∈(,). 又f(-1)=f(0)=f(1)=0, ∴当λ∈(,)∪(,)或λ=0时,f(x)=λ在[-1,1]内有实数解.
复制答案
考点分析:
相关试题推荐
若实数x满足不等式manfen5.com 满分网,则x的取值范围是     查看答案
已知函数f(x)=ax+a-x(a>0,a≠1),且f(1)=3,则f(0)+f(1)+f(2)的值是    查看答案
定义运算:manfen5.com 满分网则函数f(x)=3-x⊗3x的值域为    查看答案
不等式manfen5.com 满分网的解集为    查看答案
已知y=4x-3•2x+3的值域为[1,7],则x的取值范围是( )
A.[2,4]
B.(-∞,0)
C.(0,1)∪[2,4]
D.(-∞,0]∪[1,2]
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.